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To address the problem of an unmanned aerial vehicle (UAV) close-formation flight, the wingman pitch angle caused by aerodynamic interference
is taken as the extreme value search variable, and the annealing recurrent neural network extremum search algorithm is used to make the wingman
interference pitch angle converge to its extreme value. This minimizes the amount of power required by the wingman in a close-formation UAV flight.
The problem of the control variables switching back and forth, and the phenomenon of output “chatter” in traditional extremum search algorithm,
are eliminated. The dynamic performance of the system is improved, and the stability analysis of the system is simplified. The effectiveness of the

algorithm is verified by the simulation of UAV close flying formation.
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1. INTRODUCTION

At present, unmanned aerial vehicles (UAVs) play an impor-
tant role in military and civil fields. As a key technology and
difficulty, the control of UAV formation flight determines the
feasibility of using UAVs in practical applications (Tran et al.,
2018). Therefore, the importance of improving the control
ability of UAV formation flying is obvious. Several scholars
have proposed that, for a situation where two multi-UAV
systems (i.e., teams) are flying from a starting point to a target
point, in order to avoid collisions, a Kalman filter be used to
estimate and predict the moving position of obstacles, using
distribution. The formula MPC cost function is extended to a
penalty term to calculate and adjust the flight trajectory of the
overall UAV formation (Ille and Namerikawa, 2017). Some
scholars propose the algorithm of decentralized deployment
and reconstruction in a convex bounded polygon area, which
enables each UAV to intelligently predict the trajectory (Boril
and Jalovecky, 2013; Chevet et al., 2020). The main reason is
that the ability of UAVs to cooperate with each other and to
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adapt to the environment, are inadequate, making formation
flight control unstable. Therefore, it is necessary to improve
the information exchange and adaptability of UAV flight
control.

In order to solve the aforementioned problems, this paper
proposes a flight control method for UAV formation based
on the annealing recurrent neural network. By constructing
the UAV pitching angle extremum search model, using
the annealing recurrent neural network extremum search
algorithm, the UAV interference pitch angle converges to
the extreme value. Combined with the sinusoidal excitation
signal of flight control, the filter signal is used to approximate
estimate the gradient of flight control output, and the
aerodynamic drag and virtual combined external force model
of the UAV are established, which are deduced by Newton’s
kinematics law. The linear motion equation of UAV formation
can be obtained, and the flight control algorithm of UAV
formation is completed (Singh et al., 2016). The simulation
results show that the proposed method has better real-time
performance than the traditional method and has better
adaptability to the path in terms of planning for different
obstacles.
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2.  DESIGN AND APPLICATION OF
EXTREMUM SEARCH ALGORITHM

2.1  Design of Extremum Search Algorithm
Based on Annealing Recurrent Neural
Network

The state equation and cost function of a controlled object are
obtained with:

E1) = fEQ), u(®) } (1)

(1) = J(E()

where € € R", u € R™ and T € R are the state
variables, control variables and output values of the system
respectively, and t(¢) = J(&(¢)) is called the cost function
of the controlled object. The controlled object satisfies the
following assumptions:

Suppose 1 has a smooth control law u;(t) =
ai(E(1),0;), i € [1,2,...,m], which makes the state
variables of Equation (1) asymptotically stable, where 6; €
R,0 =1[616>...0,]7 is the search vector.

Lemma 1 is for Equation (2) of the controlled plant. If there
is a smooth control law u;(¢t) = «; (£(¢), 6;),i € [1,2,...,m]
which makes the plant asymptotically stable, then there must
be a smooth function /:R™~ R". Hence, the following
formula holds:

f(é(t)s al (é(t)s 91)7 C(2(€(t), 92)1 sy am(é(t)v em))
=0&£0) =10@)) (2)

The closed-loop system equation £(¢) = [(6(¢)) is locally
asymptotically stable.
Thus, the cost function of the system can be simplified as:

(1) = (J°DE®) 3)

Suppose 2 has an optimal search vector 6* € R™,0* =
[0 05 ... 671" such that the output value 7 of the cost function
has a global extremum, that is V6; € R,i € [1,2,...,m],
that is:

(J°DIOF 65 ...6F...651<[6162...6;...00]"

(J°DIOF 65 ...65...651=16162...6;...00]"

It is assumed that the time scale separation condition
between the search vector 6 and the state variables of Equation
(1) is satisfied.

Commentary 1: In the actual extreme value search and
optimization system, the change of theta is much slower than
the state variable of the controlled object. Therefore, when
theta changes, the dynamic change of the controlled object
Equation (1) in tracking the equilibrium state can be ignored.

Because the cost function is differentiable, we can obtain
the result by the time differential between its two ends:

Ji@@)0 > (1) =T > (1) “)
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Where:
° AN O()) (oI
J1(0@)) = [3(1 5)9(190)) G 3)9(2 (1) 3 °D( (t))]

0
0(1) = [01(t) 62(1) . . .6 (D)]"

T@) = aiJ 2;9(1))

When the system control law u(¢) is known and the
specific extremum vector 6* is unknown, an extremum
search algorithm is designed to make the search vector 6 ()
converge to 6* automatically as soon as possible, so that
the cost function satisfies t* = (J°[)(6*). Obviously,
when 0(f) converges to its extremum vector 6%, vector

AIDOW) | [2W°DE@) | |3U°DEW)
[J1(0(1))] H 30, 36, H 0m H

converge to zero. In this case, the purpose of introducing the
annealing recurrent neural network into the extremum search
algorithm is to make the vector |J;(6(¢))| converge to zero
vector and 6 () converge to 6* in a finite short time under the
constraints of Equation (4).

To sum up, the process of solving the extremum search
problem can be transformed into:

will

&)

Minimize goals: ¢’ 5
constraint condition:An = b
Where:
n=[J10®) 1) 6®)T]3m x 1
¢ =[01xm lixm lem]T
b=[0(T)T (Te)T"
Lism = sgn(J1(8(1)))01xm
A= GT(I) 0l><m O1><m
lem lem Jl (9(!)) 3x3m

According to the duality principle, the problems above have
the following dual forms:

Minimize goals: b7
g S } ©)

constraint condition: AT ¢ = ¢

Where ¢ = [¢1 ¢2 ¢3]7 is the dual vector of 7.

Thus, the optimization problem of an extreme value search
system is equivalent to the problem of minimizing ¢’ 7 and
maximizing b7 ¢ when the constraints of Equation (5) and
Equation (6) are satisfied by the annealing recurrent neural
network.

In the traditional extreme value search system (Chevetetal.,
2018; Nguyen et al., 2017), only the sine excitation signal is
used to solve the system optimization problem, which easily
leads to a convergence error of the sine form in the final
optimization parameters of the system; as a result, the goal
of extremum and the operation of the actuator cannot be
achieved.

The energy function of annealing is defined as a recurrent
neural network:

1 1
E(n,¢) = E(cTn —bTe)* + SIT@ (AN = )|

1
+ EHTT(t)(ATg—c)n2 7

where Energy function E (7, ¢) is the differentiable convex
function, and 7'(¢) is the annealing variable matrix; i.e.:

)\leiﬁlt X Imx1 Omx1 Omx1
T(t)= Omx1 )MZE_ﬁzt X Imx1 Omx1
Omx1 Omx1 A3e B Lt ] 5005
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Figure 1 Structure of the annealing recurrent neural network.

where Ai, B(j = 1,2, 3) is the normal number. By changing
the value of A; and B;, the annealing rate of recurrent neural
network can be improved.

Using the energy function in Equation (7), the dynamic
equation of annealing recurrent neural network is defined
as the negative direction along the gradient of the energy

function:
dnp _ _ 0EMm,¢)
dr — 4 an (8)
ds _ _  0EM®,5)
ar = TV ac

x1 and x7 are selected to represent the internal state variables
of different neurons:

dt
n=xi

©))

L2 = —y[—b(cTx1 —bTx2) + ATT(OT (1)(ATx2 — ©)] }

g =x2
(10)

where y is a proportional constant and a positive number.
Changing the size of y can adjust the convergence speed of
the annealing recurrent neural network (Quintero et al., 2017,
Rana and Kumar, 2019). The output of neurons is directly
output by the corresponding state variables.

The structure of the annealing recurrent neural network is
shown in Figure 1. The construction shown in Figure 1 can
make the energy function Equation (7) converge to zero point
along the fastest speed direction in the shortest time (Roza
et al., 2019; Mehdifar et al., 2020). Once the energy function
converges to zero, then all its components will converge to
zero. Thus, the extremum targets of ¢y and b7 ¢ can be
obtained when the constraints are satisfied.
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L = —y[e(cTx; — bTxy) + ATTT ()T (1) (Ax) — b)] }

2.2 Global Convergence Analysis of
Parameter Perturbed Recurrent
Neural Networks Based on Chaotic
Annealing

According to the definition of non-stationary Markov chain,
it can be seen that the extremum search algorithm of recurrent
neural network with parameter perturbation based on chaotic
annealing belongs to a non-stationary Markov chain algorithm
(Guzey, 2017; Jain and Rastogi, 2019), and each non-
stationary Markov chain can be represented by a directed
graph G.

Inlemma 2, let S, = {i € V|J(j) < J(i), Vj € Ni} (v
be the vertex set of all States in a digraph g, N; be the total
number of states in the neighborhood of state i) be the set of
local extremum points of objective function in state space, and
J(i)and J (j) are the values of S, (Ito et al., 2017). The global
optimal solution in Sm is searched by non-stationary Markov
chain algorithm, if the annealing temperature T satisfies T >
0 and lim 7 = 0, and the existence time TK makes:

11— 00
© rL
/ exp (=5 ) dr = oo (11)
174 T
where r = min max rad(i, j) is the radius of digraph g,
ieV-S, jev

rad(i, j) is the minimum number of edges from vertex i to

vertex j in digraph G, L = max max |J (i) — J (j)|.
ieV jeN;
The non-stationary Markov chain algorithm is strongly

ergodic; that is, the annealing algorithm corresponding to the
non-stationary Markov chain algorithm will converge to the
global optimal solution of the optimization problem with a
probability of 1.
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Figure 2 Optimization of UAV close formation flight structure with annealing recurrent neural network extremum search algorithm.

Let the digraph G correspond to the extremum search
algorithm of parameter perturbation recurrent neural network
based on chaotic annealing, and the radius r and L are the
relevant parameters in the digraph G. The following theorem
is obtained.

In Theorem 1, let S = {i e VIF(j) < F(i), Vj € N;} be
the set of all the extremum points of the objective function
in the state space, f(I) and f(J) are the values of the
objective function (Surama and Acharyya, 2018). The global
optimal solution in SM is searched by the extremum search
algorithm of parameter perturbation recurrent neural network
based on chaotic annealing. If the annealing temperature
T (11) satisfies Tp > r L, then the extremum search algorithm
is strongly ergodic. The algorithm converges to the global
optimal solution of the extremum problem with a probability
of 1.

It is shown that according to the definition Equation (11)

of annealing temperature 7, t > 0 and tlim T = 0 can be
—00

obtained:
/ - rL dt
exp| ——
154 T

/oo ( FL 1(2+t)>alt>/oo 1 dt (12)
= X —— 0 1n S
1% P To T Jie 2+t

In@ + )| = oo

In practice, the radius 7 and L of the digraph G corresponding
to the extremum search algorithm must exist. However, there
may be differences in the methods used to determine 7 and L
for different problems.

3. UAV FORMATION FLIGHT
SIMULATION ANALYSIS

In order to improve the robustness of the system, sliding
mode control is used to replace PD control in autopilot design
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(Kalinli, 2017; Karpathy and Li, 2017). The application
of the extremum search algorithm requires that there be a
clear functional relationship between the search target and
the control quantity. According to the state equation of the
wingman in formation flying, the method is transformed into
simple steps. The functional relationship between the vertical
and lateral relative distance between the wingman and the
pilot aircraft and the jamming pitch angle 9y is obtained as
follows:

€ion = (Ajon — BionKion)eion + Fw Wwake(y, z)

(13)

{ﬁw = Cpelon

The optimization of UAV close formation flight struc-
ture is shown in Figure 2, F,(s) = Cyp[SI — (Aion —
Blon1<lon)]71 Fy.

Atthe beginning, the distance between the wingman and the
leader is x = 50 m in the longitudinal directionand z = —5m
in the altitude, and the right wing of the leader coincides
with the left wing of the wingman by y = —0.14 m. The
parameters of the lateral annealing recurrent neural network
are: ny; = ny2 =0, ny3 = 0.11, By1 = By2 =0, Byz =
—0.02, w1 = 0.05. The parameters of vertical annealing
recurrent neural network are as follows: nzy = nzy =
0, nz3 =0.02, Bz1 = Bz2 =0, Bz3 =—0.01, u; = 0.30.

The scale coefficient of the annealing recurrent neural
network is the main factor affecting the convergence speed
of the neural network (Varsamis et al., 2018; Biswas and
Acharyya, 2018). If the value of parameter 8 is too large,
an output error will result. If the parameter g is too large, the
system will lose stability. In a word, the selection of initial
parameter value must be combined with the actual simulation
object. The simulation results of wingman converging to
the optimal compact flying formation structure are shown in
Figures 3-8.

As evident, the optimal jamming pitch angle 9, = 1.17°
can be quickly found by using the annealing recurrent neural
network extremum search algorithm, and the optimal close
formation structure can be maintained. At this time, the
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Figure 3 Lateral distance y results.
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Figure 4 Vertical distance Z result.
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Figure 5 Simulation results of elevator J,.

power required for wingman flight is reduced by about 40%,
which verifies that this method can control the UAV tight flight
formation to achieve the optimal structure and minimal energy
consumption (Bahareh et al., 2018; Liao et al., 2018).

Under the initial condition, the UAV group adopts a
V-shaped formation to fly according to the predetermined
route, and the heading angle and speed of each UAV remain
unchanged. The simulation results are shown in Figure 9.
When obstacles appear, the speed of the long aircraft does not

vol 30 no 3 May 2022

change; only the heading angle changes in order to change
the trajectory to avoid the threat of obstacles. The following
wingman follows the change of heading angle of the pilot,
maintaining its speed, and keeping the relative distance from
the leader unchanged.

The simulation results of the secondary process are shown
above in Figure 10. The circle in the figure indicates the threat
area presented by the obstacle.
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Figure 10 is enlarged to obtain the local details of formation
change, as shown in Figure 11.

From the figure, it can be seen that the UAV can effectively
avoid obstacles in formation flying, the relative distance
between the wingman and the leader can always be consistent,
and the speed and heading angle of the wingman are always
consistent with that of the leader, which shows that the
functions of the wingman and the leader are stable in a fixed
formation. When the UAV formation is avoiding obstacles,
the leader’s speed and heading angle change, and the wingman
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still follows the leader’s flight path, which shows that the
method has good adaptability and verifies the flexibility and
effectiveness of the design proposed in this paper.

This method can ensure that in the wake field with
uncertainty, the larger range signal can be tracked, and the
wingman can be prevented from entering the wake downwash
area of the leader aircraft. The pitch rudder and yaw rudder
of the wingman are no longer chattering, and the search
efficiency is also improved.
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Figure 9 UAV formation flying without obstacles.
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Figure 10 UAV formation flying when obstacles appear.

4. CONCLUSIONS

The optimal close formation flight structure of UAV is
achieved by using the annealing recurrent neural network
extremum search algorithm: the wingman requires a mini-
mum amount of power, and the “chattering” phenomenon of
system output and the back and forth switching of control
quantity are eliminated, which were two problems of the
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traditional extremum search algorithm. The application range
of the extremum search algorithm is broadened. Based
on the research results, further research will focus on the
optimization of organizational structure, route planning and
formation maintenance, and the uncertainty associated with
the planning of an emergency obstacle avoidance strategy,
and overall performance.
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Figure 11 Local details of formation changes.
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