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In recent years, the development of the power sector has progressed rapidly, the peak power load is increasing, and the imbalance between power
supply and demand is becoming more and more serious. Therefore, this research was conducted to predict the peak power load in order to provide
effective response and solution measures. The current study used big data technology, Long Short-Term Memory (LSTM) network and Bayesian network
as its theoretical basis, regularizes the design of loss function, optimizes the network weights, and finally obtains the LSTM electric load peak prediction
model based on Bayesian network. Experiments were conducted to compare the performance of the proposed model with that of the traditional LSTM
model. The model proposed in this study has a training time of 44 s for the integrated station data, and the prediction accuracy reaches 96.54% for
the load peak percentage of 95.5% data. The performance results of Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Relative Error
(MRE), and Mean Absolute Error (MAE) are 115.947, 10.161, 0.027, and 9.656, respectively. The experimental results indicated that the LSTM peak
power load prediction model based on the Bayesian network has high prediction accuracy, which confirms the validity and feasibility of the proposed
model.
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INTRODUCTION

As the demand for electricity continues to increase, accurate
forecasting of peak electricity loads is vital to ensure the
stability and security of electricity supply. However, there
are relatively few studies on peak load forecasting, and there
are also problems of poor accuracy and efficiency [1]. The
traditional peak load prediction method also has obvious
areas requiring improvement, one of which is the lack of
statistics on the electricity consumption pattern of users in
each region, without considering the specificity of electricity
consumption in each region; the other is that when making
peak load prediction, only the data of previous years have
been considered, and there is a certain lag [2]. With the rapid
development of technology for big data analysis, the electric
load data can be extracted and transformed into effective
information by various methods. Therefore, the current study
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constructed a Bayesian network based on the forbidden search
algorithm and the great likelihood estimation method, and
regularized the loss function design in the LSTM network,
selected the RMSprop optimization function to adjust and
optimize the network weights, and finally proposed a kind of
LSTM electric load peak prediction model based on Bayesian
network [3–4]. From the theoretical analysis, the prediction
accuracy of this model can be improved to a certain extent,
helping the load peak prediction to be more accurate and
scientific. The aim of this research is to provide a new
direction of inquiry to promote the development of electric
power enterprises and solve various electric power problems.

1. RELATED WORK

Neural networks as an arithmetic model have more mature
applications in pattern recognition, intelligent control, power
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management, biology, medicine and other fields, and can help
solve many practical problems. Fu et al. [5] believed that
signal interference or attenuation can affect the integrity and
correctness of data information transmission, so the Bayesian
network was applied to the development of fault diagnosis
and troubleshooting for the probe card, which effectively
improved the success rate of fault. Noor et al. [6] found that
when assessing the condition of a pipeline, the traditional qual-
itative method has more serious subjectivity, which affects the
calculation of pipeline fault probability. Hence, they proposed
an improved Bayesian network model based on the table of
probability conditions, and successfully constructed a pseudo-
quantitative. Liu et al. [7] concluded that there is a significant
non-linear relationship between lean adoption and organiza-
tional performance, which, if not explored accurately and in
depth, could lead to the unsatisfactory application of lean
tools, thereby negatively affecting corporate performance. By
integrating the explanatory structural model and Bayesian
network, the study analyzed and compared the trends of
operational performance and environmental performance,and
finally succeeded in proving a non-linear relationship between
lean tools and operational and environmental performance,
providing some reference for further exploration of their S-
curve relationship. Aziz et al. [8] conducted an in-depth
analysis of the flaws in the monitoring of complex healthcare
processes, taking into account the different maternal health
stages. The Bayesian network was the basis for the
construction of a monitoring model that took into account the
interaction between different maternal health care stages. The
researchers used logistic regression models to estimate the
Bayesian network parameters for different variables, which
eventually succeeded in determining the importance of tracing
the early health care stages and effectively improving maternal
health care in a hospital setting. Kumari et al. [9] concluded
that in industrial chemical processing, the key to effective
troubleshooting is the accurate and unambiguous diagnosis
of the root cause of the failure. This study used recurrent
loops as an improvement based on Bayesian networks for
achieving effective optimization of the Bayesian network
probabilistic model, and finally obtained a reliable causal
network structure that enables efficient decomposition and
processing of recurrent networks within the time frame,
substantially improving the accuracy and effectiveness of
causality identification.

Sun et al. [10] innovatively applied Bayesian networks to
the analysis of the severity of highway collisions involving
vehicles carrying hazardous material, and the influencing
factors, firstly using random forest algorithm to obtain the
ranking of various traffic safety risk factors in order of
importance, and then using Bayesian network algorithm to
infer the probability of collision. The experimental results
showed that during the road transportation of hazardous
material driver fatigue and erratic driving, road features such
as ramps or arch bridges, poor lighting conditions, and bad
weather conditions can increase the severity of road accidents
involving hazardous materials, verifying the reliability and
accuracy of networks that use the Bayesian algorithm. Zhang
et al. [11] improved and optimized convolutional neural
networks to solve the difficult problem of fault diagnosis in
the monitoring of the condition of machinery. Ghorbel and

Souissi [12] concluded that in the digital advertising industry,
the accurate prediction of click-through rate is crucial and
can play a powerful role in increasing advertising profit and
enhancing user experience. Based on this, scholars proposed
a long- and short-term memory network prediction model
incorporating genetic algorithm and compared it with other
network hybrid models. He et al. [13] used the long and
short-term memory network as the main means to evaluate
the unloading relaxation estimation during the excavation of
dams and the construction of embankments,and found that the
unloading relaxation phenomenon and time effect were more
significant in columnar jointed basalt compared to massive
basalt. The researchers successfully verified the reliability
and accuracy of the long and short-term memory network in
the evaluation of unloading relaxation degree.

In summary, Bayesian networks and long- and short-term
memory networks can be applied effectively in different fields.
Therefore, this study integrates them organically and applies
them to the prediction of electric load peaks to improve the
accuracy of these peaks and provide reliable support for the
stability and security of electric power supply.

2. BAYESIAN NETWORK-BASED LSTM
POWER LOAD PEAK PREDICTION
MODEL CONSTRUCTION

2.1 Construction of Bayesian Networks

The essence of the Bayesian network structure is a Directed
Acyclic Graph (DAG) in which random variables are referred
to as nodes, and the network can be called a Gaussian Bayesian
Network (GBN) when and only when the node variables
are continuous. Each variable contains a probability density
distribution, and the probability density distribution of the
root node variable is its edge probability density distribution.
Bayesian networks are divided into structure construction and
parameter learning. The network structure is used to express
the qualitative relationship between the variable nodes,and the
network parameters can express the quantitative relationship
between the variables and their parents. Let the random vari-
able be X , the probability density function of the variable is
expressed by f (x), and the joint probability density among the
variables is shown by Equation (1) through Bayesian principle.

f (x) =
n∏

i=1

fi (xi |x1, · · · xi−1) (1)

In Equation (1), fi (xi |x1, · · · xi−1) denotes the conditional
probability density of the accompanying variable X at each
case. The probability density has some correlation with
the parent node, so the joint probability density function is
expressed as Equation (2).

f (x) =
n∏

i=1

fi (xi |x pa(i)) (2)

In Equation (2), pa(i) denotes the parent node. This type
of computational equation can deal with discrete variables
and can also solve problems with continuous variables.
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Figure 1 Taboo search algorithm flowchart.

The electric load addressed in the study is a continuous
variable problem, so GBN can be chosen for modeling. If
the continuous variables of the load satisfy the Gaussian
distribution, the conditional and joint densities of the variables
can be represented by Equation (3) using Bayes’ theorem.{

p(X |Y ) = p(X,Y )
p(Y )

f (x |y) = f (x,y)
f (y)

(3)

The conditional probability density of the multidimen-
sional normal distribution can be solved simultaneously by
the probability density and distribution formulas, and the
problem of solving the posterior probability density of the
multidimensional normal distribution can be transformed into
the problem of finding the probability density of the joint
nodes. The joint probability density formula is shown in
Equation (4).

f (X) = (2π)
−n
2 |C| −1

2 exp{−(X − μ)T C−1(X − μ)} (4)

In Equation (4), μ denotes the mean vector of variables; C
denotes the n ∗ n dimensional covariance matrix. When the
node and the parent node are known, the joint probability
density can likewise be decomposed by the conditional
probability density of the parent node, as expressed in
Equation (5).

f (xi |pa(xi)) ∼ N(xi |μi

i−1∑
i=1

βi j (x j − μ j ), vi ) (5)

In Equation (5), βi j denotes the regression coefficient
between the variable and the relative parent node variable;
v denotes the conditional variance of the variable in the case
of parent determination. The expression of the covariance
matrix is shown in Equation (6).

C = [
(I − B)−1]T

D(I − B)−1 (6)

In Equation (6), D denotes the diagonal array of conditional
variances; B denotes an upper triangular array in βi j ; and I
denotes the unit matrix. The qualitative relationships of the
above variables are then the Bayesian network structure.

The algorithm for Bayesian network structure learning can
be a taboo search algorithm based on Bayesian Information
Criterion (BIC) scoring, which is shown in the flowchart in
Figure 1.

In Figure 1, the forbidden search algorithm is used
to establish the parameters and the initial solution first,
and determine whether the initial solution satisfies the
convergence criterion. If it does not satisfy the convergence
criterion, the algorithm stops searching; if the initial solution
satisfies the convergence criterion, the algorithm screens
the initial solution to determine the candidate solutions.
After the algorithm produces the candidate solutions, it
determines whether each candidate solution satisfies the
contempt criterion. And the solution that satisfies the criterion
becomes the new optimal solution and is assessed according
to the convergence criterion. For the candidate solutions that
do not satisfy the contempt criterion, the algorithm selects the
current optimal solution from the candidate solutions, updates
the contraindication table, and repeats the above steps. The
study interprets the BIC criterion with Equation (7).⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f (X |Y ) =
[
(2π)

N
2 |S| 1

2

]−1
exp

{
− (X−W Y−U )T+1

2S

}
W = SXY S−1

XY

S =
[

SX X SXY

SXY SY Y

]

U = [UX − WUY ]

(7)

In Equation (7), f (X |Y ) denotes the Gaussian probability
density function of X conditional on the variable Y ; X and Y
denote the variables in the function; S denotes the covariance
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Figure 2 Bayesian network structure based on Tabu search algorithm and BIC criterion.

matrix between the variables; U denotes the mean; and N
denotes the length. Assuming that there are independent and
identically distributed training samples m, the training sample
log-likelihood function is expressed in Equation (8).

L = N

2
log |S| − 1

2

N∑
i=1

[
−1

2
(X − WY − U)T

× S−1(X − WY − U)
]

(8)

With the data mean, covariance and weights determined,
the Gaussian distribution parameters are obtained and the
Bayesian network score is obtained with Equation (9).

Score = L − M

2
ln(p) (9)

In Equation (9), M denotes the nodes associated with
the probability density function; p denotes the nodes of the
Bayesian network. The structure of the above Bayesian
network constructed based on the forbidden search algorithm
and the BIC criterion is shown in Figure 2.

The parameter learning of Bayesian networks is carried
out after determining the network structure. The methods of
parameter learning commonly include maximum likelihood
estimation and Bayesian estimation. In this study, the
maximum likelihood estimation method was selected for
network parameter learning.

2.2 Construction of long- and short-term
memory neural networks

Long Short-Term Memory (LSTM) is an optimization model
proposed to overcome the defects of Recurrent Neural
Network (RNN) model [14–16]. The LSTM model is
optimized by including a memory unit and a gating unit to
preserve the information based on the RNN model. The
structure of the LSTM is depicted in Figure 3.

In Figure 3, there is a separate memory unit in the
LSTM neuron that follows the time series to record the

valid information during the operation of the model, while
being able to cascade the computation of the whole structure
[17–18]. There are specific gates in neurons: Input Gate
(IG), Forget Gate (FG) and Output Gate (OG) [19–20]. The
expression of gating is shown in Equation (10).{

g(x) = σ(θx + b)

σ (x) = 1
1+exp(−x)

(10)

In Equation (10), σ denotes the Sigmoid function, which
maps any number in the interval [0, 1]; x denotes the input
of the structure; θ denotes the network matrix in the network
structure; b denotes the bias vector. When the information
is passed from the memory unit, the information goes from
the current neuron to the new neuron, the FG will control the
network to forget part of the information of the neuron. And
the IG will filter the processed information and add to that
memory unit, and finally the OG filters the information again
to obtain the output value of the hidden layer of the network,
and the output result obtained by the current neuron is the
input value of the neuron at the next iteration. The LSTM
and the forward computation process can be described by a
mathematical expression, as shown in Equation (11).

⎧⎪⎨
⎪⎩

ft = σ(θ f [ht−1, xt ] + b f )

it = σ(θi [ht−1, xt ] + bi )

ot = σ(θo[ht−1, xt ] + bo)

(11)

In Equation (11), ft denotes FG; ht−1 denotes the output of
the neuron at the moment of t − 1; it denotes IG; ot denotes
OG; and ct denotes the control memory unit. FG is the control
of the information flowing from the memory unit to the current
memory unit at the previous iteration; IG is the filtering and
saving of the input information; and OG is the control of
the information output in the time step. The input value of
the information added to the memory cell is calculated with
Equation (12).

c̃t = tanh(θc[ht−1, xt ] + bc) (12)
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Figure 3 Specific structure of LSTM and diagram of internal structure

In Equation (12), tanh denotes the activation function for
normalization. The memory cell is updated as shown in
Equation (13).

c̃t = ft ⊗ ct−1 + it ⊗ c̃t (13)

In Equation (13), c̃t denotes the updated memory unit; ⊗
denotes the corresponding element multiplication. The output
of the neuron hidden layer is shown in Equation (14).

ht = ot ⊗ tanh(ct ) (14)

The weights and bias parameters of the LSTM neurons
need to be optimized cyclically by the loss function and the
optimization function, and are generally optimized using the
Back Propagation Through Time (BPTT) algorithm, which
derives the gradient vertically while propagating the gradient
horizontally along the time axis. Since the weights are shared
at each iteration, the gradients of the weight parameters are
also updated multiple times, and the total gradient after multi-
ple updates is finally taken as the result of one weight update.
Let the training samples be N(xσ , Y σ ); the input values
are represented by xσ = (xσ

1 , xσ
2 , · · · , xσ

m)T ; the labels are
represented by yσ = (yσ

1 , yσ
2 , · · · , yσ

m)T ; and the predicted
output values are represented by oσ = (oσ

1 , oσ
2 , · · · , oσ

m)T .
The study uses Euclidean distance to calculate the loss
function of the output and the label. In the constructed
LSTM network, the stacked linear cascade is the main
connection structure. If the loss function in the structure meets
the requirements, the model parameters will not produce
large changes, which in turn will prevent fluctuations in the
prediction results and will not converge the model with a
large amount of composite data. To ensure that overfitting of
the model occurs, and that the model has better adaptability
and balance, regularized probabilities are included in the loss
function. The loss function of the model is expressed by
Equation (15).

Loss = 1

2

m∑
i=1

(oσ
i − yσ

i )2 + 1

2
α

m∑
i=1

(
1

θ

)2

(15)

In Equation (15), α represents the introduced regularization
factor, which takes the value of 0.0001; θ represents the
weight. The model adjusts the weight of each layer
accordingly, and the layer with too high a weight needs to

be reduced appropriately, while the layer with low weight
needs to be increased appropriately, so as to ensure that
the weight of each layer can contribute to the optimization.
The optimization function of the LSTM network model
was chosen as the forward root mean square gradient de-
scent algorithm (RootMean Square Propagation, RMSprop).
This algorithm introduces decay coefficients and gradient
accumulation which can be used to solve the problems of
gradient oscillation, slow convergence and local optimality
in stochastic gradient descent algorithms. The forward root-
mean-square gradient descent algorithm is good for training
convolutional neural networks and includes the concept of
mini-batch in the algorithm. The result of each update of the
weights is the average of the sum of the batch gradients, which
not only reduces the gradient oscillation, but also optimizes
the gradient descent direction. The gradient size is calculated
using Equation (16).

g = 1

m
∇θ

m∑
i=1

L(xi , θ, yi ) (16)

In Equation (16), L(xi , θ, yi ) denotes the loss function; ∇θ

denotes the derivative of the weights; m denotes the training
samples. In the calculation of the gradient accumulation, the
decay coefficient is used to decay the previous gradient accu-
mulation to complete the update of the gradient accumulation.
The update is shown in Equation (17).

r = ρr(1 − ρ)g ⊗ g (17)

In Equation (17), ρ denotes the decay coefficient; r
denotes the gradient accumulation. The updated values of the
calculated weights are calculated with the updated weights as
shown in Equation (18).

{
�θ = − η√

δ+r
⊗ g

θ = θ + �θ
(18)

In Equation (18), η denotes the learning rate; δ denotes
the small constant, which guarantees the stability of the
value. The above step-by-step approach then provides a more
comprehensive introduction to the LSTM power load peak
prediction model based on Bayesian networks.
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Figure 4 Model sample division prediction results.

Figure 5 Forecast results of different load peak percentage.

3. BAYESIAN NETWORK-BASED LSTM
POWER LOAD PEAK PREDICTION
ANALYSIS

3.1 Electricity Load Peak Sample Selection

The purpose of determining the model sample’s division ratio
is to find the best allocation ratio between the training sample
set and the test sample set. Due to the limited number of data
samples, it is necessary to achieve a high prediction accuracy
while ensuring sufficient training samples. The annual peak
load data of each type of station in a city from 2002 to 2021
were selected, and the proportion of the training sample set
was adjusted to 50%, 60%, 70%, 80%, and 90% of the total
sample, while the remaining proportion was the test sample
set. The study was conducted to explore the effects of different
proportions on the accuracy of the prediction model. The
annual peak load prediction of distribution transformers in
the station area is based on the peak load data of the previous
year to predict the peak load of the next year whose prediction
results with different sample division proportions are shown
in Figure 4.

In Figure 4, the prediction accuracy of the Bayes-LSTM
load prediction model is related to the percentage of training
samples, and the model prediction accuracy is positively
correlated with the percentage value in the interval of 50%–
80% of training samples; the model accuracy shows a certain
volatility in the interval of 80%–90% of training samples.
The highest model prediction accuracy was achieved when
the training sample share was around 80% and the prediction
accuracy reached 96.20%. Therefore, the study fixed the
partition ratio between training and testing samples at 8:2,
and conducted predictive analysis on different peak load
percentages to explore appropriate sample peak ratios.

In Figure 5, the prediction results of the model for different
load peak percentages have certain volatility, where the
highest value of prediction accuracy is 96.54%, and the load
peak percentage is 95.5% at this time. For the training of the
Bayes-LSTM load prediction model, the loss function was
selected as the Euclidean distance after regularization, and the
optimization model was selected as the RMSprop algorithm
as it does not require too much load data for training, and
the model is close to convergence after 50 times of batch
training.
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Figure 6 Curve change diagram of loss function during model training.

Figure 7 Comparison of model training time results.

Figure 6 shows the variation of the loss function curve
of the model during training. The Bayes-LSTM model was
selected for the experiments to compare its performance with
that of the traditional LSTM temporal prediction model.
The loss function curves of both models converge in the
interval of [0.10, 0.15] for the residential station data and
in the interval of [0.00, 0.05] for the integrated station
data. However, the Bayes-LSTM model has a lower loss
rate and is more stable. The results indicate that the
proposed model has more advantages in breaking through
local optima.

For the experiments conducted to obtain a more comprehen-
sive evaluation of the results, the TIME metric was selected
to compare the Bayes-LSTM load prediction model with the
traditional LSTM model. To ensure the reliability of the
results, all model runs were implemented on the PyTorch
platform.

In Figure 7, the training time of the Bayes-LSTM model
is about 44 s for the integrated station area; about 38 s for
the residential station area; and about 41 s for the industrial
station area. The training time of the LSTM model is about 22
s for the integrated station area; about 19 s for the residential
station area; and about 20 s for the industrial station area.
The results of a comprehensive analysis show that the Bayes-
LSTM model requires more training time because the network
is more complex.

3.2 Bayes-LSTM Model Prediction
Performance Analysis

The prediction accuracy of the Bayes-LSTM model proposed
in the study is assessed by Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), Mean Relative Error (MRE),
and Mean Absolute Error (MRE). Absolute Error (MRE) and
Mean Relative Error (MRE) were used as judgment criteria.
The experiments were conducted to validate the data from the
integrated, residential and industrial stations respectively.

Figure 8 shows the comparison of the metrics of the models
in the integrated station. In Figure 8(a), the Bayes-LSTM
model gradually stabilizes and finally settles at 115.947 after
performing the fifth MSE calculation; the LSTM model
stabilizes at 207.337 after performing the seventh MSE
calculation. In Figure 8(b), the Bayes-LSTM model gradually
stabilizes and finally settles at 10.161 after performing the
sixth RMSE calculation; the LSTM model stabilizes at 13.671
after performing the seventh MSE calculation. In Figure 8(c),
the Bayes-LSTM model gradually stabilizes and finally settles
at 10.161 after performing the sixth RMSE calculation. At
10.161, the LSTM model stabilizes at 13.671 after performing
the seventh MSE calculation. In Figure 8(c), the Bayes-LSTM
model gradually stabilizes and finally stabilizes at 0.027 after
performing the third MRE calculation; the LSTM model
stabilizes at 0.038 after performing the third MRE calculation.
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Figure 8 Index comparison of the model in the comprehensive station area.

Figure 9 Comparison of indicators of the model in residential areas.

In Figure 8(d), the Bayes-LSTM model gradually stabilizes its
value after the fourth MAE calculation and finally stabilizes
at 9.656; the LSTM model stabilizes at 12.088 after the fifth
MSE calculation. The results show that the Bayes-LSTM
model has a higher prediction accuracy for the integrated
station data.

Figure 9 shows the comparison of the metrics of the models
in the residential stations. In Figure 9 (a), the Bayes-LSTM
model gradually stabilizes its value after the seventh MSE

calculation and finally stabilizes at 1167.703; the LSTM
model stabilizes at 2006.361 after the tenth MSE calculation.
In Figure 9 (b), the Bayes-LSTM model gradually stabilizes
its value after the sixth RMSE calculation and finally In
Figure 9(c), the Bayes-LSTM model gradually stabilizes after
the third MRE calculation and finally stabilizes at 0.0767;
the LSTM model stabilizes at 0.0818 after the third MRE
calculation. In Figure 9(d), the Bayes-LSTM model gradually
stabilizes its value after the fifth MAE calculation and finally
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Figure 10 Index comparison of the model in the industrial area.

stabilizes at 28.424; the LSTM model stabilizes at 34.185
after the sixth MSE calculation. The results show that the
Bayes-LSTM model has a higher prediction accuracy for the
residential station data.

Figure 10 shows the comparison of the metrics of the
models in the industrial station area. In Figure 10(a), the
Bayes-LSTM model gradually stabilizes its value after the
tenth MSE calculation and finally stabilizes at 4697.656;
the LSTM model stabilizes at 5515.839 after the twelfth
MSE calculation. In Figure 10(b), the Bayes-LSTM
model gradually stabilizes its value after the seventh RMSE
calculation and finally stabilizes at 68.191; the LSTM model
stabilizes at 73.902 after the seventh MSE calculation. In
Figure 10(c), the Bayes-LSTM model gradually stabilizes
after the third MRE calculation and finally stabilizes at
0.0304; the LSTM model stabilizes at 0.0339 after the third
MRE calculation. 10(d), the Bayes-LSTM model gradually
stabilizes its value after the fifth MAE calculation and finally
stabilizes at 58.731; the LSTM model stabilizes at 62.625 after
the sixth MSE calculation. The results show that the Bayes-
LSTM model has better prediction accuracy for the industrial
station data. From the analysis of the above three types
of station forecasting results, the prediction error of Bayes-
LSTM load forecasting model is generally better than the
traditional LSTM time-series forecasting model. The Bayes-
LSTM load forecasting model has more accurate prediction
accuracy, smoother prediction results, and is more consistent
in terms of the actual load change pattern, although it does not
have better training time.

4. CONCLUSION

China’s electricity sector is developing rapidly. The annual
load peaks keep breaking new records, and the problem of
supply-demand imbalance caused by peak periods is gradually
becoming more pronounced. This study introduces Bayesian

network and LSTM network in more detail, and proposes the
LSTM electric load peak prediction model based on Bayesian
network. A stacked cascade of Bayesian networks and LSTM
networks was constructed, and comparative experiments were
conducted to verify the performance of the proposed model.
For the experiments, the data set was divided into a training
set and a test set in the ratio of 8:2, and the data with no less
than 95.5% of the peak load in the station area was used as the
sample. The experimental results show that the Bayes-LSTM
model has four performance results of 115.947,10.161, 0.027,
and 9.656 for MSE, RMSE, MRE, and MAE respectively
for the data of the integrated station area; 1167.703, 34.153,
0.0767, and 28.424 for the data of industrial stations, and
the results of the four performance indicators are 4697.656,
68.191, 0.0304, 58.731, respectively. The Bayes-LSTM
model proposed in the study is slightly inferior to Trangrong’s
LSTM method in terms of training time, but improves the
prediction accuracy significantly. Experimental evidence
demonstrates the feasibility and effectiveness of the Bayes-
LSTM load prediction model proposed in the study. However,
further experiments should be conducted since the model
constructed in this study could be extended by incorporating
more indicators so that the new model can be open to capacity
measurement and provide a range of solutions for various
problems in the power system.
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