
Eng Int Syst (2020) 1: 61–68
© 2020 CRL Publishing Ltd Engineering

Intelligent Systems

SmartOrders: A BLE and NFC
Enabled Android-Based Offline
Ordering System for Restaurants

Michael Zipperle1∗, Christian Laustsen2† and Anders Rikvold2‡

1Furtwangen University
2Technical University of Denmark

Ordering systems for restaurants offer a great way to offload work from restaurants, in taking orders, and lessens the burden of customers needing to
acquire and interact with a waiter. In this paper we investigate the feasibility of an offline ordering system for restaurants that only uses commodity
hardware (smartphones) and communicates entirely over Bluetooth Low Energy (BLE). This stands in contrast to current systems, which either require
special hardware at the tables or that the customer uses a smartphone application that functions over the Internet. Using technology such as BLE
and Near Field Communication (NFC) we propose a system to handle the interaction between the restaurant and customer, along with a prototype
implementation, SmartOrder, that demonstrates the feasibility of the system. SmartOrder shows that common concerns such as the range and throughput
of BLE are either not a concern or at least acceptable. The prototype implementation achieves a range of 71 meters with no obstacles and 12 meters
around corners (6 meters on each side). Data throughput is shown to be somewhat slow, but this is acceptable since data transfers happen infrequently.
Finally, both of these limitations are addressed with potential solutions.

Keywords: Mobile Application, Offline Systems, Smart Systems, Order Systems, BLE, NFC

1. INTRODUCTION

Imagine you have just arrived in a restaurant, and taken a seat
at a table. In order to start eating, you first ask the waiter for
the menu, which he brings to you. After thinking about what
you would like, you call the waiter to your table again, and
tell him what you would like to eat. The waiter writes down
your order, and takes it back to the restaurant kitchen, where
your meal is prepared. Then, hopefully after not waiting too
long, the waiter brings you your meal.

This process involves several steps, and requires time and
effort form both the customer and the restaurant personnel.
Also, the process might be irritating for the customer if it
is difficult to get hold of the waiter. Several systems have

∗michael@Zipperle.de
†CKL@codetalk.io
‡anders_rikvold@hotmail.com

tried to alleviate this process by introducing a digital ordering
system, where the communication between the restaurant
and customer is optimized through digitally communicating
devices. However, current systems have one of two
drawbacks. Either they

a) require an investment in expensive hardware, or b) it
requires the user to be connected to the Internet.

The former of these drawbacks usually occurs in systems
which requires the restaurant to invest in a single specialized
ordering device, such as a tablet, for each table. Some
systems try to alleviate this drawback by allowing users to
use their own smartphones to order food, through running
an ordering application. To the best of our knowledge,
such systems requires the user to be connected to the
Internet. For a lot of customers, especially for ones with
a local data plan, this is no problem. However, for certain
people, especially for travellers in foreign countries or
persons with a prepaid data plan, requiring Internet access

vol 28 no 1 March 2020 61



SMARTORDERS: A BLE AND NFC ENABLED ANDROID-BASED OFFLINE ORDERING SYSTEM FOR RESTAURANTS

is not desirable, as it might be inconvenient or incur extra
charges.

To alleviate this problem, we introduce a system, called
SmartOrders. The main idea of this system is that the
restaurant has its own smartphone or tablet device, and that
at least one customer at each table of the restaurant has the
same. When users want to order, they scan an NFC chip
on their table, upon which their phones will automatically
connect to the restaurant’s device over BLE. After this, the
customer can see the menu on his or her device, and place
orders from it. As the system uses BLE, it does not require
an Internet connection, so that customers are not required to
have their own local data plan, and restaurant owners are not
required to provide free WiFi (WiFi) for its customers. Also,
it does not require a high investment in hardware from the
restaurant either, as it only requires each table to be equipped
with a cheap NFC tag, along with a single smartphone or tablet
device.

The motivation behind using BLE instead of WiFi is
threefold. First, BLE, as implied by its name, has a very
low energy consumption[1]. Secondly, the BLE component
is often times either entirely unused or far from saturated
with devices. This provides a unique opportunity to use
a component that does not disrupt any existing actions or
operations the customer might have going on. Finally,
using WiFi introduces an additional hardware dependency.
While this is usually not a problem in an indoor non-mobile
restaurant, it would exclude using the application in e.g. a
park or other ad-hoc instances without power outlets.

Our paper provides the following main contributions.

a) A prototype implementation, called SmartOrders, an
Android-based offline, low-cost ordering system for
restaurants, based on BLE and NFC technology.

b) An evaluation of the practical feasibility of an ordering
system such as SmartOrders, which uses BLE for
communication.

2. RELATED WORK

There are already some existing solutions, which are solving
the same problem space, but all them need expensive
additional hardware or an Internet connection for the com-
munication between the customer and restaurant owner. In
the following paragraphs, existing solutions are mentioned in
more detail.

Smart Ordering System via Bluetooth [2]: This work
provides an insight in sending the orders from a table to the
restaurant owner. In this approach, keypads, on each table
of a restaurant, allow the customers to type in the number of
the menu item to order it. If the customer presses Enter,
the order is sent to the restaurant owner via Bluetooth. The
restaurant owner is using an application, running on Windows,
where he can see the orders from the customers. However, this
solution does not offer the customer a good user experience.
First, the customer needs to know the number of the menu item
he wants to order. Secondly, the customer has no overview of
which orders he has already placed.

Visionect: Tabletop Ordering [3]: In this approach, there is
a tablet with the installed Visionect Application on each table
of a restaurant. The customers can use this application to make
their orders. The restaurant owner can receive the orders via
the tablet or a web interface. In addition, this system allows
customers to give feedback regarding the food and drinks to
the restaurant. Nevertheless, this solution requires additional
hardware, which leads to high acquisition and maintenance
costs for the restaurant owner.

Smart Restaurant Menu Ordering System [4]: This system
is based on embedded touchscreens in each table. The
customers can use this touchscreen to browse the menu and
afterwards make their orders. The interface for the customer
owner is a big screen in the kitchen, where the cooks and
waiters can see the incoming orders. This solution has the
same limitation as to the previous one, it requires additional
hardware.

QikServe [5]: QikServe provides an application for the
customers as well for the restaurant owner. The customers can
use their own smartphone to download the menu and make an
order to the restaurant. An Internet connection is necessary
to enable the communication between the customers and the
restaurant owner. However, many restaurants do not have
good cellular coverage, or additional hardware for a WiFi
network is required.

In summary, the limitations of these existing solutions are
that they require an investment in expensive hardware, or that
the user must be connected to the Internet.

3. SYSTEM OVERVIEW

The system consists of two applications, a Restaurant Owner
Application (ROA), and a Customer Application (CA). The
idea is the restaurant using this system is equipped with a
smartphone or tablet, which is running the ROA. Each table is
then equipped with an NFC tag, which contains information
about the table, as well as information about how to connect
to the Restaurant Owner application device. The restaurant
owner will use the Restaurant Owner Application to program
this information onto the tag.

When visiting the restaurant, each customer is equipped
with his or her own smartphone, which has the CA installed.
When a customer sits down at a table in the restaurant, and
scans the NFC tag located on the table, their smartphone will
automatically open the application and establish a connection
to the restaurant over BLE (in other words, no Internet
connection is required). After the connection is established,
the customer can make orders and communicate with the
restaurant’s device to place orders. A graphical overview of
the system can be seen in figure 1.

4. SYSTEM FUNCTIONALITY

The following sections lists the functionality of the appli-
cation. The functionality has been listed for the restaurant
customer and owner applications separately. It is however
worth noting that the functionalities cross-cut the applications

62 Engineering Intelligent Systems



ZIPPERLE ET AL

Figure 1 Overview of the SmartOrders system

in some cases, such as placing an order, or establishing a
connection between the restaurant and the customer. In order
to stress the advantages of our application, we have also
specified certain constraints for the application.

4.1 Customer Application

Connect to Restaurant This feature will connect the user to
the restaurant, so that he or she can communicate with
it to use other functionalities. This should happen in the
following way.

1) The user scans the NFC chip with their smartphone.

2) The smartphone automatically opens the applica-
tion, reads the NFC chip contents, and uses this to
connect to the restaurant via BLE.

View Menu In order to be able to place orders through
the app, he or she needs to be able to see the menu,
and it would be most practical to do this through the
application. The customer should be able to choose to
see the menu, and if he or she does, the menu should be
presented.

Order from Menu This functionality is the core of the
application; the customer actually ordering from the
restaurant. When the user is presented with the menu,
he or she should be able to build and order, and send the
order to the restaurant over the already established BLE
connection.

View Orders The customer can view the orders placed by
him. As long as the order is not being processed, the
customer can cancel or edit an order.

View Restaurant Information When the user is connected
to the restaurant, the user should be able to see the
information of the restaurant he or she is connected to. As
well as showing basic information about the restaurant,
this functionality will provide the user with a simple way
of seeing which restaurant he or she is connected to, or
if he or she is at all connected to one.

4.2 Restaurant Owner Application

Program NFC chip The system requires that every table of
the restaurant is equipped with an NFC chip that the user
can scan to connect to the restaurant. In order for this

to work, the NFC chips need to contain the necessary
information for establishing the connection. Therefore,
the restaurant owner needs to be able to program each and
every chip through the app, such that the chip contains
information for a) establishing a BLE connection and b)
identifying the table of the customer, for example when
receiving an order from it.

Update Menu In order for the user to be able to order from
the menu, the restaurant owner needs to create one
through the application. This feature consists of two
parts, a) adding menu items and b) deleting menu items.
Restaurant customers will be sent the new menu upon
establishing a new connection to the restaurant.

See Placed Orders The restaurant owner should be able
to see orders placed by customers, as well as which
customer (table) placed the order. Very central to the
core functionality of the application, this will allow the
restaurant to serve customers.

Finish Order In order to keep track of which orders and
customers have been served, the restaurant owner must
be able to continuously update the orders that have been
served.

4.3 System Constraints

Platform Both applications must be able to run on smart-
phones. The restaurant owner must only need one smart-
phone, and each customer (table) will also need their own
smartphone to order.

Communication The application must be able to function
without the customer having an Internet connection. This
means that the restaurant does not have to provide a
WiFi connection to customers, or exclude customers
without a mobile network connection. It is assumed
that communication between the restaurant and customer
applications are done through BLE.

5. SYSTEM ARCHITECTURE
AND DESIGN

Our System Architecture exists of two separate applications,
one for the restaurant owner and one for the restaurant
costumers. In Fig. 2 our Software Components are shown,

vol 28 no 1 March 2020 63



SMARTORDERS: A BLE AND NFC ENABLED ANDROID-BASED OFFLINE ORDERING SYSTEM FOR RESTAURANTS

Figure 2 Software Component Diagram

both applications are using the Communication Manager to
handle the communication between both applications. The
Restaurant Owner Application stores the Menu, Restaurant
Information, Tables and Orders in a local SQ Lite Database
[6]. The Communication Manager exists of a NFC and BLE
component.

The NFC and BLE components are integral parts of the
architecture of the application, and as such their part will be
described in detail in the following sections.

5.1 NFC

The NFC tag allows great flexibility in both the data on the
tag itself and the actions performed upon scanning such a

tag. Devices implement managers that handle scans, such as
the Tag Dispatch System in Android[7]. This means we can
register the application to open when it encounters a certain
MIME type (e.g. application/smartorders) on the tag. From a
user experience viewpoint, this is superior compared to using
QR codes, which involves opening the application and then
waiting on the camera to initialize and scan the code.

The data that is written on the NFC tag is rather simple,
and consists of a table ID along with an identifier for the ROA
in case of multiple ROA in the same proximity. Originally
this was the Media Access Control (MAC) address of the
device, but since later versions of the Android API removed
this ability, it is for now just the name of the ROA device.

The operations that the NFC component must support is
then the ability to a) acquire a tag, b) read the data on a tag

64 Engineering Intelligent Systems



ZIPPERLE ET AL

Figure 3 The BLE GATT communication between client and server

and c) write new data to a tag. Furthermore, to not let existing
data interfere with the process of overwriting (e.g. by opening
a related app) it takes control of the Tag Dispatch System and
handles all delegations in-app.

To support the most devices, the data format written onto
the tags are NDEF[8], which is specified by the NFC Forum
(type 1, 2, 3 and 4). This also means that the tag must be
compatible with this format, such as tag types NTag213 and
NTag216.

5.2 BLE

With BLE we do encounter some limitations with regards to
the devices that can run the ROA. It appears that only newer
devices can act as a Bluetooth GATT server (in other words,
a peripheral). That said, as of 2017 the list of compatible
devices[9] is fairly long, indicating that it is reasonable to
expect a restaurant owner to either have such a device or to
invest in one. As for the client side, most devices support
BLE, so this poses no problems here.

As such, the ROA will act as a Bluetooth GATT server
(peripheral role) and the CA will act as a Bluetooth GATT
client (central role). The ROA advertises its services using
a universally Unique Identifier (UUID) that is known to both
applications, and the client then connects to this service. To
facilitate communication between the server and client, the
server supports to characteristics, one the client can read from
(the menu) and one the client can write to (submitting the
order), as illustrated in figure 3.

In reality though, each data packet is limited to a size of
20 bytes, which means the communication is actually divided
up into many subsequent requests. This is done by the client
issuing read requests after each response, until it receives an
!END! from the server. At this moment it puts together all the
packets that it has received, to form the full menu. A similar
approach is taken when the order is submitted, although here
the packets are put together at the server-side.

6. PROTOTYPE IMPLEMENTATION

The restaurant owner and customer applications were imple-
mented[10][11] on the Android operating system, which
runs on both smartphones and tablets. More specifically,
the applications target a minimum Application Programming

Interface (API) version of 18. Screenshots, with explanations,
from the prototype implementation can be seen in figures 4
and 5.

6.1 Connecting to the Restaurant

As mentioned in section V, the BLE and NFC components
are a large underlying part of the application. In the
prototype implementation this was implemented by using the
NFC and BLE adapters provided by the Android Operating
System (OS). Both of these adapters are wrapped up in
a CommunicationManager object, which provides a
simple and intuitive interface for the ROA and CA to use.
For example, reading the NFC tag is as simple as adding a
method to the onNewIntent Android system event.

The BLE component requires a bit more work to integrate.
The ROA implements an interface RestaurantData that
contains two methods (omitting all public keywords and void
returns, they are assumed on all methods for the rest of the
section unless otherwise specified):

1) String getMenu()

2) String handleOrder(String order)

The first is called from within the Bluetooth GATT
server when the client requests the menu (by reading the
characteristic), and returns the menu to the GATT server. The
second is called from within the GATT server when the client
submits an order (by writing to the characteristic), and lets
the ROA handle the value contained in the argument to the
function.

As for the client, the CA implements the interface
ClientData that contains three methods:

1) handleMenu(String menu)

2) handleOrderResponse(String msg)

3) handleConnectionResult(boolean
connected)

The first is called when the Bluetooth GATT client is done
receiving the menu, the second is called after having submitted
the order and the final method is called after connection status
has changed, to indicate the state the GATT client is in.

TheCommunicationManager is also implemented in a
reference application that showcases the usage of it, to lessen
the burden of eventual implementers.

vol 28 no 1 March 2020 65



SMARTORDERS: A BLE AND NFC ENABLED ANDROID-BASED OFFLINE ORDERING SYSTEM FOR RESTAURANTS

(a) (b) (c)

(d) (e) (f)

Figure 4 Screenshots of the Restaurant Owner Application Prototype. 4a shows the table overview. 4b shows table creation screen. 4c shows the menu item
screen. 4d shows the menu item creation screen. 4e shows receiving an order and 4f shows serving an order

(a) (b) (c)

Figure 5 Screenshots of the Customer Application Prototype. 5a shows the NFC tag scanning screen. 5b shows the restaurant information screen and 5c shows
the menu item screen

7. EVALUATION

To evaluate the implementation we try to address two main
concerns:

1) Is the data rate of BLE enough for the transfer not to be
noticeable to the user?

2) Is the range of BLE good enough to support common
restaurant layouts?

These concerns will be addressed in the following sections.
Experimental Setup: For the experiment we use two

Android devices to test the ROA and CA applications. The
CA is run on a Samsung Galaxy S3, Android version 4.3 and
API version 18 on board. The ROA is run on a Sony Z5,
Android version 7.0 and API version 24 on board.

The SmartOrder applications are then tested in various
environments that are similar to restaurant layouts.

7.1 Throughput

To test the throughput we tested the time it took to transfer
both the menu and also the time it takes to submit an order.
Both of these will vary heavily depending on their size. For
the intent of testing, we defined the menu to have 10 items
and the order to include three items of the menu.

Menu items: An average of 8 seconds were spent on
receiving the menu items.

Submitting order: An average of 3 seconds were spent on
submitting the order to the ROA.

While both of these are definitely slow and can be felt, it
is arguably not a big problem since these operations occur so

66 Engineering Intelligent Systems



ZIPPERLE ET AL

infrequently. Furthermore, there are ways of addressing the
throughput and increasing it, which will be discussed in the
section VIII.

7.2 Range

Three scenarios were tested, all tests were performed by
continuously increasing the distance until no communication
were possible.

Straight line of sight: In many restaurants, there are little to
no obstacles between the counter and the tables. To simulate
this scenario the applications were run with each side standing
as far away as possible. It was shown that the communication
was still functional at a distance of 71 meters.

With tables and lower obstacles: To see if low obstacles
such as tables or people would interfere, testing was performed
indoor with this simulated. Results indicate that this had no
effect, with easily achieving 37 meters, only limited by the
size of the test building.

Around corners: Some restaurants feature a room layout
that might be a bit more convoluted. To test this, the range
was tested around corners by each side standing at an equal
distance around a corner of a concrete wall. A maximum
distance of 6 meters of each side (meaning 12 meters in total)
was achieved.

As the results indicate, range seems to be of little concern,
except if the counter where the ROA will be is around a corner
and tables are spread far away on the other side. There are
ways to address this, as will be discussed in section VIII.

8. DISCUSSION AND LIMITATIONS

Throughout the paper, several limitations have been men-
tioned, which will be addressed here. Furthermore, some
additional thoughts on improvements and future work are also
included.

1) Increasing Throughput: In later BLE specification it is
possible to increase the Maximum Transmission Unit
(MTU) size of the packets by a small amount. This can
help alleviate the latency in a small way.

Furthermore, another method of increasing the through-
put, that is supported in all BLE devices is by increasing
the amount of packets that are sent simultaneously in
each connection window of the BLE communication.
This is certainly feasible, but does add a lot of additional
complexity for the client to server communication. A
real-world implementation would indeed implement this.
That said, this is outside the scope of this prototype
implementation.

2) Increasing Range: To combat the problem of range
dropping significantly around obstacles, such as building
corners, BLE features the possibility of creating mesh
networks. Such a network could be utilized to either
extend the whole network by setting up fixed BLE
repeaters, or by using the CA as a repeater device once

it’s connected, by letting it simultaneously act as a client
and server.

3) Notifications from ROA to CA: Further enhancements
to the user experience can be achieved by setting up
characteristic notifications so the ROA can indicate order
changes to the customer, such as delays or cancellations,
effectively making two-way communication possible.

4) Device Support: While Android has supported passive
NFC reading for quite a while, so far Apple has neither
had the hardware support before iPhone 7 nor have they
provided any APIs to read NFC chips. That said, as of
time of writing, Apple has just announced the addition of
NFC reading capabilities in iOS 11, which is currently
in developer preview beta 1[12]. This means that the
application of systems such as SmartOrder, that rely on
NFC for ease-of-setup, can become a reality for a much
larger audience than before.

9. FUTURE WORK

In this paper, we investigate the feasibility of an offline
ordering system for restaurants that only uses commodity
hardware (smartphones) and communicates entirely over
BLE. The evaluation has shown, that this approach offers a
great solution to overcome the drawbacks of current solutions.

In the future, we will implement a real-world application
of the proposed offline ordering system for restaurants. This
implementation contains the proposed methods to improve
the limitation of the prototypical implementation, which were
shown in Section VIII.

Furthermore, this proposed approach can be used not only
as an offline ordering system for the restaurant. The use
of commodity hardware and communicates completely via
BLE also offers great potential in many other areas such as
e-commerce and e-business. Therefore, we will evaluate the
feasibility and effectiveness in these areas.

10. CONCLUSIONS

The project set out to show the feasibility of an ordering
system communicating entirely over BLE using commodity
devices and no Internet connection, and this goal has been
achieved. By creating a prototype implementation of the
concept, with an application for the restaurant owner and
one for the customer, several concerns has been explored.
The range of BLE has been shown to only cause minor
concerns in convoluted room layouts, with potential solutions
to this problem. Furthermore, the throughput of the BLE
communication, while certainly slow, has been concluded to
not be a problem with regards to the user experience. To this
problem, there also exist potential enhancements that can be
implemented in a final application. Finally, the usage of NFC
has shown to great hand-in-hand with communication under
the assumption of no Internet access, by allowing the NFC
tags to supply the data needed to, in this instance, facilitate
the BLE connection to the correct restaurant.

vol 28 no 1 March 2020 67



SMARTORDERS: A BLE AND NFC ENABLED ANDROID-BASED OFFLINE ORDERING SYSTEM FOR RESTAURANTS

REFERENCES

1. M. Siekkinen, M. Hiienkari, J. K. Nurminen, and J. Nieminen,
“How low energy is bluetooth low energy? comparative
measurements with zigbee/802.15.4,” in 2012 IEEE Wire-
less Communications and Networking Conference Workshops
(WCNCW), Apr. 2012, pp. 232–237. DOI: 10.1109/WC-
NCW.2012.6215496.

2. N. Hashim, N. Ali, A. Jaafar, N. Mohamad, L. Salahuddin, and
N. Ishak, “Smart ordering system via blue-tooth,” International
Journal of Computer Trends and Technology (IJCTT)-volume,
vol. 4, pp. 2253–2256, 2013.

3. Visionect. (2019). Tabletop ordering, [Online]. Available:
https://www.visionect.com/blog/tabletop-ordering-the-digital-
revolution-in-your-favorite-restaurant/ (visited on 06/09/2019).

4. M. A. Cotta, M. N. T. Devidas, M. A. Dias, M. S. N. Kalidas,
and M. R. A. Tanaji, “Smart restaurant menu ordering system.”

5. QikServe. (2019), [Online]. Available:
https://www.qikserve.com (visited on 06/09/2019).

6. Android. (2019). SQLiteDatabase, [Online]. Available:
https://developer.android.com/reference/android/database/
sqlite/SQLiteDatabase (visited on 06/09/2019).

7. ——, (2019). NFC Basics, [Online]. Available:
https://developer.android.com/guide/topics/connectivity/nfc/nfc
(visited on 06/09/2019).

8. ——, (2019). Ndef, [Online]. Available: https://developer.
android.com/reference/android/nfc/tech/Ndef (visited on
06/09/2019).

9. R. Networks. (2019). Android Beacon Library, [Online].
Available: https://altbeacon.github.io/android-beacon-library/
beacon-transmitter-devices (visited on 06/09/2019).

10. C. Laustsen. (2019). KAIST CS442 project, [Online].
Available: https://github.com/Tehnix/SmartOrders (visited on
06/09/2019).

11. ——, (2019). SmartOrder App Demo, [Online]. Available:
https://www.youtube.com/watch?v=8s4mnqKdtIA (visited on
06/09/2019).

12. Apple. (2019). Core NFC, [Online]. Available:
https://developer.apple.com/documentation/corenfc (visited
on 06/09/2019).

68 Engineering Intelligent Systems


