
Eng Int Syst (2020) 4: 197–204
© 2020 CRL Publishing Ltd Engineering

Intelligent Systems

An Improved Algorithm for
Single-Cluster TSP Based on ACO

Jianbing Lin1∗ and Zhixiong Chen2

1College of Information Engineering, Putian University, Putian 351100, China.
2College of Mathematics, Putian University, Putian 351100, China.

Significant distributing characteristics of nodes in a graph may lead to different convergence and affect the performance of the Travelling Salesman
Problem (TSP). Regarding this, the concepts of domain and density are defined in view of the dense local distribution of nodes in a graph in TSP, and
an improved Ant Colony Optimization (ACO) algorithm named SC-ACO is proposed for TSP using a single cluster feature. In this article, the basic
principles and strategies of an SC-ACO algorithm are introduced, and the pheromone and next node selection probability are processed via the final
domain to distinguish the different behaviors of ants inside and outside the regions with dense nodes. The specific construction process of the SC-ACO
algorithm is then described in detail. Finally, this article creates simulated experiments for TSP using SC-ACO and ACS algorithms, with test results
showing that SC-ACO has obvious advantages over the ACS algorithm in solving TSP problems that have a single cluster and a large scale of nodes.

Keywords: cluster; TSP; SC-ACO; domain; density

1. INTRODUCTION

As a classical combinatorial optimization problem, the
Travelling Salesman Problem (TSP) has been widely used
in path planning, computer networking, circuit design and
other fields. Up until now, no complete solution to TSP
has been found, which makes TSP a NP-complete problem
[1,2]. When solving TSP, with the increase of the number
of the nodes the corresponding solution space increases
exponentially, and the amount of computation increases
dramatically. Due to the excellent performance of some bio-
based swarm intelligence meta-heuristic algorithms in solving
TSP problems, many scholars have done extensive research
in this field in recent years, and have achieved gratifying
results [3–5]. The Ant Colony Optimization (ACO) algorithm
is one of the representative algorithms, which is inspired
by the foraging process of ants. In the process of food
searching, ants secrete pheromones to record the path they
take, and then other ants choose the shortest paths to find
food according to the concentration of pheromones on the
path. Early ACO algorithms generally had shortcomings,
such as a slow convergence speed and becoming trapped

∗E-mail: liniss@126.com; Tel.: 0086-594-2825091

in a local optimum, when solving TSP problems [6,7]. In
the framework of such ant colony systems, many scholars
have tried different methods in the application of specific
TSP problems or combined with other related algorithms,
and many new achievements have been reached. Morteza
and Hadi used ACO and a dynamic reconfigurable graph to
simulate the TSP problem with the same number of nodes,
and achieved 11.2% and 6.8% better performance than AS
and ACS, respectively [8]. In 2017, Darren M.C. proposed a
parallel algorithm based on multi-CPU and the reduction of
pheromone matrix dimensions, and achieved a 12-fold time
reduction when it was applied to solve the TSP problem with
a scale of 200,000 nodes [9]. Some scholars have improved
the selective probability of the sub-paths forming potential
optimal solutions for the pheromone updating mechanism of
the ant colony system to speed up the convergence of the
algorithm [10, 11]. To address the problem that the basic
ant colony algorithm takes too long to deal with a medium-
scale TSP, a dynamic self-adaptive ant colony algorithm
based on MapReduce is proposed [12]. This algorithm can
dynamically adjust pheromone volatilization coefficient in a
pheromone updating strategy, so that the ant colony can self-
adaptively find a better path, and the iteration part of the ant

vol 28 no 4 December 2020 197

AN IMPROVED ALGORITHM FOR SINGLE-CLUSTER TSP BASED ON ACO

-5 0 5 10 15 20 25

18

20

22

24

26

28

30

32

34

36

-5 0 5 10 15 20 25

18

20

22

24

26

28

30

32

34

36

Figure 1 The different distribution characteristics of 20 nodes.

colony algorithm is parallelized by the MapReduce computing
model. Finally, this algorithm is deployed and run on the
Hadoop platform, and achieves the ideal results that it reduces
the average running time to nearly half when compared to
the basic ant colony algorithm. In 2017, a multi-objective
balanced traveling salesman problem model was proposed for
the first time [13], this was used to model the optimization
problem with multiple traveling salesman and multi-tasking,
and was thereby applied to practical problems with multiple
objectives or individuals. It has been validated with the data
of TSP problems from small-scale to large-scale, and good
results have been obtained.

Although most of the existing biological swarm intelligent
meta-heuristic algorithms including ACO adopt parallel
algorithms, they are still unable to solve the computational
problems caused by large-scale nodes. Researchers have been
searching for more efficient algorithms based on biological
swarm intelligence for many years to delve into deeper areas
[14]. In practical applications, the distribution of nodes
in some graphs shows certain characteristics that have a
great influence on the solution space [5, 15]. Clustering is
used to describe the distribution characteristics of TSP nodes
exactly. If the node distribution of a TSP problem conforms
to the cluster characteristics, the corresponding solution space
will be compressed, which will improve the efficiency of
the optimization process of TSP problem, eliminate some of
the unnecessary optimization processes and further optimize
the solution of the TSP problem that meets the requirements;
thereby enhancing the efficiency of the algorithm. In order
to solve TSP problems, the distribution characteristics of
nodes in a graph are analyzed and studied in this article,
and the concepts of domain and density are proposed to
determine whether the graph of a given problem conforms
to the characteristics of a single cluster. On this basis, the
ACO algorithm of the TSP problem with a single cluster
feature is improved, named as single cluster-ACO (SC-ACO),
and finally simulation tests and comparative analysis are
conducted.

2. DEFINITION OF DOMAIN AND
DENSITY

Generally, the distribution of nodes in a TSP problem
is random, and the distance and direction between nodes

have no specific law. However, some nodes show certain
characteristics from the overall distribution. Therefore, it is
reasonable to study the distribution characteristics of nodes
from a general perspective. In order to describe the overall
distribution characteristics of nodes, the concepts of domain
and density are proposed below.

Domain refers to a square area of a plane, represented by
SD. A specific domain SDi can be described as Formula (1):

SDi [O(x, y), r], i = 1, 2, . . . , n (1)

where O is the origin of the domain, r is the radius of the
domain (half of the side length of the square), and (x, y) are
the coordinates corresponding to the origin.

Density is an index to describe the distribution of nodes in
a domain, represented by ρ. The corresponding density (ρi)

of a domain SDi can be expressed by Formula (2):

ρi = Numi /Areai (2)

where Numi is the number of nodes in domain SDi and Areai

is the area of domain SDi .
For the convenience of calculations, Areai is usually further

processed as: Areai = sqrt (Areai), where sqrt is a square root
function. According to the above definitions, if a node in
the graph is taken as the origin of the domain, the number
of nodes in domains with different radius and area will be
different. For a limited number of nodes, a suitable origin and
radius can be found, and the domain they constitute will be
the largest domain SDmax, which contains all the nodes in the
graph.

For example, two kinds of node distributions with 20 nodes
(if not specified, the units of co-ordinate axis in this paper
are all integer) are shown in Fig. 1. Fig. 1A shows a graph
containing densely distributed nodes, while Fig. 1B shows
a graph containing relatively scattered nodes. According to
the definition of domain, domain SD1 [O (10, 28, 5] and SD2
[O (10, 28, 5] is selected for Fig. 1A and 1B, respectively
(Fig. 2).

The density of nodes in Fig. 2A and 2B is calculated
following the definition of density. Although r = 5 and
Area = 100 in both domains, domain SD1 contains 17 nodes
(Num1 = 17), while SD2 only contains 8 nodes (Num2 = 8).
Therefore, the corresponding densities of Fig. 2A and 2B are
ρ1 = Num1/ Area1 = 17 / sqrt(100) = 1.7 and ρ2 = Num2/
Area2 = 8 / sqrt(100) = 0.8. It can be seen that, the nodes in

198 Engineering Intelligent Systems

J. LIN AND Z. CHEN

-5 0 5 10 15 20 25

18

20

22

24

26

28

30

32

34

36

SD1

-5 0 5 10 15 20 25

18

20

22

24

26

28

30

32

34

36

SD2

A 3B

Figure 2 A suitable domain was selected for differently distributed nodes.

the domain SD1 are denser than that of SD2. In the case of an
irregular distribution of nodes, density can be used to describe
some general characteristics of node distribution in the same
conditional domains. If the density of a given domain reaches
a specific value, the nodes in a given domain form clusters,
and the node distribution characteristics of the corresponding
TSP have cluster features. The special value is then called
as a threshold. For the TSP problem with a large number
of nodes, the node distribution may display multiple clusters.
This article is limited to studying the TSP problem with only
a single cluster feature, those with multi-cluster feature will
be analyzed in another study.

3. BASIC ALGORITHM FRAMEWORK
OF TSP WITH A SINGLE CLUSTER

The main goal of solving the TSP problem is to find the optimal
or better path for a given graph, which traverses all nodes in
the graph. The traditional TSP algorithm does not consider
the influence of node distribution on the construction process
and result of solution from an overall view. In this paper, it
is assumed that the distribution of nodes in the graph, i.e. the
set domains and the corresponding densities, has an important
influence on the construction process and the final results of
TSP solutions. Therefore, the corresponding algorithms need
to deal with the influence accordingly. In order to achieve this
goal, a weighted undirected graph of a TSP problem with a
complete single cluster is represented by G = (V , E), where
V = {v1, v2, . . . , vn} is a set with n = |V | nodes, and E is a
set of edges that are fully connected to these nodes. Each edge
has a weight d(i, j), which represents the distance between
node i and node j .

The goal of the improved ACO algorithm for a single cluster
TSP problem is to find the shortest loop in graph G, which can
traverse every node in graph G once and only once. That is to
find out the permutation with the smallest sum of all weights
in all the permutationsπ of all nodes in graph G. The objective
function is shown as Formula (3):

min f(π) = d(vπ(N), vπ(1)) +
n−1∑
i=1

d(vπ(1), vπ(i+1)) (3)

In the classical ACO algorithm, with the increase of
the number of nodes in the graph, the computation for
the problem increases sharply, and the performance of the

corresponding algorithm decreases. Following the size and
overall distribution of nodes, the characteristics of node
distribution by setting domains with different sizes and
numbers are described and the classical ACO algorithm is
improved, so as to optimize the performance of the algorithm
with a single cluster feature.

According to the definitions mentioned above, the shape
of the domain SD is square, and the size of the domain is then
identified by the radius r (1/2 of the side length). The origin
of the domain is identified by the origin co-ordinate O (x, y).
When r = 0, the specified domain SD is a point, when r
= +∞, the domain is the whole plane. Obviously, if r is rela-
tively small, the corresponding domain contains fewer nodes,
and the optimal f (π) is easy to achieve. With the increase
of r , it will be increasingly difficult to find the optimal f(π)

for the corresponding domain. According to the researches
of a number of ant colony correlation algorithms [2,4,5], it is
known that artificial ants are prone to fall into a local optimum
in the process of searching for the optimal solution, so it
is almost impossible to find a solution that is optimal in all
domains. A possible way is to find the sub-optimal solution
and then iterate through multiple cycles, in order to obtain an
approximate global optimal solution or a better solution. For
the case shown in Fig. 2A, the density of nodes in the defined
domain is obviously higher than that shown in Fig. 2B. If
an artificial ant visits a node in the defined domain shown in
Fig. 2A, it should continue visiting all other points within the
domain before visiting the nodes outside the domain, so that
the paths remains shorter, and thus it is possible to obtain the
global optimal situation or a better solution.

In the next section, whether the distribution of nodes
constitutes a single cluster feature is determined according
to the distribution of node sets in the graph, and the initial
action of artificial ants and some corresponding measures to
be taken in the process of path searching are then determined
via the domains and densities, so as to construct an improved
algorithm for the ACO with a single cluster feature (SC-ACO).

4. CONSTRUCTION OF SC-ACO

4.1 Construction of Domain

The corresponding node set in graph G is set as V =
{v1, v2, . . . vn}. For each node Vi (i = 1, 2, . . . , n), the corre-
sponding position is expressed by vi (xi , yi), where xi and yi

vol 28 no 4 December 2020 199

AN IMPROVED ALGORITHM FOR SINGLE-CLUSTER TSP BASED ON ACO

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

SDmax

SDS
rc

Figure 3 Scanning process of SDs to SDmax.

are corresponding to the abscissa and ordinate on the plane,
respectively [16]. Setting xmax = max(x1, . . . , xn), xmin =
min(x1, . . . , xn), where max () means the maximum function
in x1, . . . , xn , while min () represents the minimum function
in x1, . . . , xn . Similarly, setting ymax = max(y1, . . . , yn) and
ymin = min(y1, . . . , yn), and then the largest domain can be
expressed as the following formula:

SDmax[O(xmin + xmax)/2, (ymin + ymax/2), rmax] (4)

where rmax = max((xmax − xmin)/2, (ymax − ymin)/2).
The density of the corresponding maximum domain can be
calculated as Formula (5):

ρmax = n/sqr t (4r2
max) = n/2rmax (5)

After the SDmax is obtained, an initial scanning field SDs
is needed. Generally, the radius of the initial scanning field rs
is set as half of the radius of the largest domain (rmax), that is,
rs = rmax/2. Subsequently, the maximum domain is scanned
comprehensively by scanning the scanning fields in different
positions to obtain different densities. By comparing these
densities with the given threshold, the cluster feature can be
determined.

4.2 Scanning Strategy

For the scale of graph G, an integer (rc) is selected as
the stepping increment in the scanning field, so that rc =
int(rmax/C), where C is the stepping coefficient and int () is
the bracket function. The stepping co-efficient determines the
stepping increment, and it can be adjusted according to the
results from the simulation test. There are two ways to scan:
one is a transverse scan, and the other is a longitudinal scan. In
this study, the main focus is specifically on the transverse scan.
For simplicity, the maximum domain of the problem is set as
SDmax [O ((0,0)], 100]. As previously mentioned, the radius
of the initial scanning field SDs is half of that of the maximum
domain, that is, rs = rmax/2 = 100/2 = 50. Selecting
the stepping co-efficient C = 10, the stepping increment
rc = int(100/10) = 10. At the beginning of the transverse
scan, the apex of the lower left corner of the scanning field

is set to overlap that of the maximum domain in order to
fix the maximum domain (Fig. 3). After scanning the first
scanning field, the scanning field is moved transversely by one
incremental unit for the second scanning. When the right side
of the scanning field overlaps that of the maximum domain,
the first scanning line is completed. Subsequently, the apex of
the lower left corner of the scanning field is set to overlap the
coordinates of the lower left corner of the second line (0, rc),
i.e. (0, 10), to continue the scan of the second scanning line
transversely. In this way, the whole domain is scanned. Thus,
the frequency of scans (Snum) can be deduced as Formula (6):

Smin = (int((2rmax − 2rs)/rc) + 1)2 (6)

Shown in Fig. 3 the red box is the location of the first scan
in the scanning field, and the blue box is the location of the
second scan in the scanning field.

4.3 Determination of Cluster Features

In the process of scanning the maximum domain by the scan-
ning fields, the density of each scanning field is calculated.
After the scanning is completed, the maximum of all of the
densities will be selected and recorded asρmax, and the domain
containing the maximum density is the final domain, called
SDfinal. The number of nodes in the final domain is NUMfinal.
According to the characteristics of the problem, a density
threshold ρth is set. If ρmax ≥ ρth, it is assumed that the pattern
is clustered, otherwise it is not clustered. For those cases
that do not constitute cluster features, the stepping co-efficient
can be adjusted and the scanning process can be repeated to
determine whether the domains constitute cluster features. If
several densities are higher than the threshold value in the
scanning process, the area of the scanning domain can be
increased and the scanning process can be repeated. The
specific increment of the new scanning field is determined
according to the new density values. If a new maximum
density is greater than or equal to the density threshold and
the other density values are less than the density threshold,
the increment is the final increment. If there is more than one
density greater than the threshold, the area of the scanning

200 Engineering Intelligent Systems

J. LIN AND Z. CHEN

field is increased continually and the above process is repeated.
The choice of density threshold is determined according to the
scale of the problem and the effect of simulation experiment.

4.4 Behavior of Ants in the Domain SDfinal

After confirming that the graph has cluster characteristics and
the final domain is obtained, the behaviors of ants inside and
outside the final domain are given below, and the key steps of
SC-ACO algorithm are also given.

In the SC-ACO algorithm, artificial ants randomly select a
node in the final domain as the starting point. Assuming that
the starting point is node i , the probability of ant k choosing
j as the next node is given as Formula (7):

pk
i j = [τi j]α[ηi j]β∑

i∈Nk
i [τi j]α [ηi j]β

(7)

where ηi j = 1/di j is pre-given heuristic information and di j

is the distance between the node i and the node j . As opposed
to the classical ACO algorithm, N in Formula (7) is the final
domain, that is, the next node selected by ants can only be in
the final domain.

Ants release pheromones when moving in the final domain.
Assuming τi j is the pheromone between node i and node j ,
the update of pheromone τi j is given by Formula (8):

τi j (t + 1) = (1 − λ)τi j (t) + 	τi j (8)

where λ is the volatilization co-efficient of pheromone, and
0 < λ < 1. 	τi j is defined by Formula (9).

	τi j =
{

I/C, edge(i, j) in path T

0, elese
(9)

where C is a constant, whose value can be the path length
obtained by a certain algorithm for TSP. After traversing all
the nodes in the final domain, the ants randomly select a
node outside the final domain and continue to access other
nodes outside the final domain according to the classical ACO
algorithm. When all the nodes out of the final domain have
been visited, it returns to the starting point in the final domain,
thus the ants complete a path optimization process. In the
next section, specific data are used to simulate the SC-ACO
algorithm, and the results are compared with that of ACS
algorithm, one of the classical ACO algorithms.

5. SIMULATION TEST AND RESULT
ANALYSIS OF SC-ACO

In this section, based on the above-mentioned cluster
characteristics of the TSP problem, the definition of domain
and density, combined with the specific construction process
of SC-ACO algorithm strategy, is applied to carry out the
experimental simulation and result analysis of the algorithm.
In this process, an ACS simulation test is also carried out for
comparative analysis. All simulation tests are conducted on
a personal computer (PC) with 8GB RAM and a 3.40 GHZ

quad core Intel CPU. The instantiation process of the SC-ACO
algorithm is first described, and the path optimization process
are then introduced in detail, with some key indicators and
their operation methods also explained. Finally, the different
results of the indicators are analyzed and compared.

5.1 Initializing Process of SC-ACO

In the initialization stage, according to the scale of the
problem, the co-ordinate distribution of nodes is used to
generate the basic distribution of nodes on the plane map
by the corresponding software. Based on the distribution
of nodes, the radius (rs) and stepping coefficient (C) of the
scanning field are determined. Usually, the selection of rs

and C should make the scanning field have a larger density,
that is, to make the scanning field contain as many nodes as
possible. The final choice of C is determined by the density of
the experimental results. Table 1 shows the corresponding co-
ordinate data of 50 nodes. According to the above description,
the maximum domain of the problem (SDmax [O ((99, 51)),
98]) can be obtained by calculation,and the radius of the initial
scanning domain is rs = rmax/2 = 98/2 = 49. Assuming
that the stepping coefficient C = 10, the stepping increment
rc = int(98/10) = 9. The total number of scans required
for the problem is Snum = (int(98/9) + 1)2 = 121. Before
scanning, the scan field is SDs [O ((1, 4)), 49]. In the process
of scanning, 121 density values need to be calculated, and
the maximum density value is ρmax = 0.40. The density
threshold set in this problem is 0.36, so the graph of the TSP
problem constitutes a cluster feature, and the final domain
SDfinal [O ((55, 4)), 49] can be obtained.

After confirming that the graph has a cluster feature and
final domain, the original data needs to be stored. The node
data in the final domain and outside the final domain are
stored in different parts of the newly generated data file. The
node data in the final domain is located in the front part of
the newly generated data file, while the node data outside
the final domain is located in the back part of the file. The
co-ordinates of all nodes in the data file are stored in a new co-
ordinate array, in order for the corresponding distance matrix
between the nodes to be calculated. After calculating the
distance matrix, the SC-ACO algorithm needs to initialize
pheromones between nodes. There are different strategies
for the initialization of the pheromone between nodes located
inside and outside the final domain. In general, higher initial
pheromones are allocated between nodes inside the final
domain, while the initial values of pheromonesbetween nodes
outside the final domain are calculated following the classical
ACO approach. The initial value of a pheromone between
nodes inside the final domain is selected according to the
density value, which is usually a function that is positively
correlated with the density of the domain. The function can
be adjusted according to the simulation results, but its initial
value must be higher than that of a pheromone outside the
final domain. The final stage of initialization is to determine
the initial position of ants. Ants can be placed at any node in
the final domain initially, and the number of ants depends on
the size of the problem set. A reasonable number of ants for

vol 28 no 4 December 2020 201

AN IMPROVED ALGORITHM FOR SINGLE-CLUSTER TSP BASED ON ACO

0 10 20 30 40 50

275

280

285

290

295

300

305

310

315

320

325

330

335

Co
nv
er
ge
nc
e

LoopCount

 ACS
 P=0.06
 P=0.12
 P=0.17
 P=0.23

Figure 4 Simulation result of SC-ACO with different probability increments.

various classical ACO algorithms is given in detail by Dorigo
M [6] et al. and Stutzle T et al. [7]. Unless specifically
stated, the parameters of relevant simulation experiments are
set according to the rules described previously [6,7].

5.2 Path Searching Stage

SC-ACO enters the path searching phase after initializing the
parameters required by the algorithm. In this stage, each ant
randomly selects a node from the nodes inside the final domain
as the starting node, and then calculates the probability of each
path from the starting node to the optional node according to
Formula (7), and then chooses the next node according to
roulette. In the process of traveling to the next node, ants
release a certain amount of pheromones. In order to compare
with the ACS algorithm, the release rule of pheromones is the
same as that of the ACS system. In the process of selecting
the next node, ants will determine whether the node is located
in the final domain. If the node is located in the final domain,
the ants will increase the probability calculated according
to Formula (7) by a probability increment to indicate that
the nodes in the final domain have priority in the next path
selection, and the probability increment value is positively
correlated with the value of density. If the starting node and
the optional node are not located in the final domain at the
same time, the probability of the ant choosing the next node is
still calculated according to Formula (7). The ant will repeat
the above actions until all the nodes in the graph are selected,
and finally the ant will return to the starting node to complete
the cycle. After that, the ant will re-initialize and continue the
path searching process, compare the results with the previous
search results, and save the better results. The above process
will circulate all the time and the number of cycles can be
controlled when initializing.

5.3 Simulation Results and Analysis

In the SC-ACO algorithm, C = 10 and ρth = 0.36 are set
to simulate the TSP problem with 50 nodes. The co-ordinate
data of the nodes are shown in Table 1. When the initial value
of the pheromone between nodes in the final domain is 0.3,

the initial value of the pheromone between nodes in the other
domain is 0.1, the number of ants is 50, α = 1, β = 3, and
the number of cycles is 50, the simulation results of SC-ACO
with different given probability increments are illustrated in
Fig. 4.

The abscissa represents the number of cycles and the
ordinate indicates the final convergence value. The black
line represents the results of the ACS algorithm, the red line
represents the results of SC-ACO for the probability increment
of p = 0.06, the dark green line represents the results of
SC-ACO for the probability increment of p = 0.12, the bright
green line represents the results of SC-ACO for the probability
increment of p = 0.17 and the blue line represents the results
of SC-ACO for the probability increment of p = 0.23.

For several different probability increments, SC-ACO can
all converge to a lower value. With the increase in the number
of cycles, SC-ACO can converge to a quite satisfactory value
even if it encounters a relatively small probability increment
(e.g. p = 0.06). Further simulation tests show that the
probability increments in the interval [0.06, 0.23] are more
suitable. However, compared with the ACS algorithm with the
same node data and parameter settings, the SC-ACO algorithm
has no advantage either in calculating time or in convergence
value. This can be explained by analyzing the specific
operation process of the SC-ACO and ACS algorithms.
For the data shown in Table 1, the final domain of the
SC-ACO algorithm contains 39 nodes, and the remaining
nodes are randomly distributed outside the final domain. Due
to the relatively small number of nodes, ants and cycles,
the differences in the pheromones of the paths are obvious
after several searching cycles, which lead to the ants of the
SC-ACO and ACS algorithms having the same behavior in
the final domain. Thus, the simulation results of the SC-ACO
and ACS algorithms have no obvious difference. However,
with the increase of the number of cycles, further simulation
results show that the time consumed by SC-ACO is much less
than that of the ACS system. The reason is, after many cycles,
the pheromone concentration of each path in the final domain
increases with the effect of the probability increments, which
reduces the computational amount of roulette probability
selection by ants through pheromones [16]. As the ACS
algorithm cannot give additional probability increment to the
nodes in the final domain in the calculation, it is impossible
to reduce the whole operation time by reducing the amount

202 Engineering Intelligent Systems

J. LIN AND Z. CHEN

Table 1 Coordinates of fifty nodes.

x y x y x y x y x y
120 45 82 36 114 20 75 65 185 29
116 64 70 22 96 18 103 53 197 90
53 26 74 32 128 43 132 55 118 21
28 71 65 51 86 31 90 53 93 56
27 62 67 48 89 55 104 69 72 59
78 14 79 13 133 19 121 7 142 98
97 51 119 14 73 4 122 8 157 70

105 45 110 20 100 23 127 24 170 66
1 68 108 57 131 49 125 55 123 47

21 23 130 24 95 48 80 41 71 22

100 200 300 400

100

200

300

400

SDinit

SDfinal

SDmax

0 20 40 60 80 100 120 140 160 180 200 220

1360

1380

1400

1420

1440

1460

1480

1500

1520

LoopCount

Co
nv
er
ge
nc
e

 ACS
 P=0.06
 P=0.12
 P=0.17
 P=0.23

Figure 5 Simulation results of SC-ACO and ACS with 200 nodes.

of computation in the related processes. According to the
literature, with the increase of the number of nodes, ants
and cycles in graph, the ACO algorithm is likely to fall into
a local optimum or search stagnation, causing the related
performance to decline sharply [17,18]. To this end, the
operation of the SC-ACO algorithm was further tested by
increasing the number of nodes and ant data and adjusting
the corresponding parameters.

The distribution of nodes in a graph with a single cluster
and containing two hundred nodes is shown in Fig. 5A. From
the co-ordinate data of nodes, the radius can be calculated as
follows: rs = rmax/2 = 196/2 = 98, rc = 19, and the final
domain (SDfinal) is [O ((214, 216)], 98]. Fig. 5A also shows
the scanning results of SC-ACO after initialization. When
C = 10, ρth = 0.36, α = 1, β = 3, the initial pheromone
value between nodes inside the final domain is 0.3 and the
initial pheromone value of nodes outside the final domain
is 0.1, the number of ants is 200 and the number of loops
is 200, SC-ACO algorithms with different given probability
increments give significantly different simulation results from
the ACS algorithm (Fig. 5B).

Fig. 5A shows the graph of 200 nodes and domains, with
the black box representing the maximum domain SDmax, the
blue box being the initial scanning field SDinit, and where
the red box is the final domain SDfinal; Fig. 5B shows the
simulation results of the SC-ACO and ACS algorithms.

In Fig. 5A, the nodes are densely distributed and cluster-
like in the field between 100 and 300 in both the X-axis and
Y-axis, so the final domain of the SC-ACO algorithm includes
these dense nodes after initialization, and processes these
nodes according to the pheromone strategy and probability

increment strategy prescribed by the SC-ACO algorithm.
They are then tested following the pre-set parameters and
compared with the results of the ACS algorithm. Fig. 5B
shows that the convergence results of SC-ACO algorithms
with different probability increments are better than that of
ACS and have advantages in calculating time. Such results can
be further improved as the number of cycles increase. When
the current node is located inside the final domain, although
the ants in ACS system can select the next node from the
final domain by pheromone and path heuristic information at
a more probable rate, it is easy for the ACS algorithm to fall
into a local optimum and search stagnation with the increase of
the number of cycles as the volatilization coefficient weakens
the interaction of pheromone concentration and path heuristic
information [19, 20]. However, the SC-ACO algorithm has an
additional probability increment to offset such effects, which
leads to the significant difference in the simulation results
between the two algorithms.

6. CONCLUSIONS

In this paper, the representation of domain and density for the
TSP problem with a single cluster feature was introduced.
On this basis, the ACO algorithm was improved and a
SC-ACO algorithm was proposed. The framework strategy
and specific construction process of the SC-ACO algorithm
were described in detail in this paper, and the SC-ACO
algorithm was then tested with simulation data and compared
with the ACS algorithm. The results show that the
SC-ACO algorithm took less time calculating and had a better

vol 28 no 4 December 2020 203

AN IMPROVED ALGORITHM FOR SINGLE-CLUSTER TSP BASED ON ACO

convergence performance than ACS on TSP problems with
a large scale set and a graph with obvious single cluster
characteristics. In the future, the way SC-ACO can be
applied to the TSP problems with multi-cluster characteristics
will be studied, and other additional factors that restrict the
convergence speed and value of the SC-ACO algorithm can
be found; as well as the sensitivity issues of data, so that
the performance of the SC-ACO algorithm can be further
improved and have a larger scope of application.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science
Foundation of China (61772292), the Natural Science Foun-
dation of Fujian Province, China (2019J01814), and the Sci-
ence and Technology Project of Putian, China (2018GP2004).

REFERENCES

1. Yang J. Y., Ding R. F., Zhang Y., et al. An Improved Ant
Colony Optimization (I-ACO) Method for the Quasi Travel-
ling Salesman Problem (Quasi-TSP). International Journal of
Geographical Information Science, 2015, 29(9), 1534–1551.

2. Zhang S., Wang Y., Li K. Fast TSP Algorithm based on Topo-
logical Perception. Journal of Southeast University (Natural
Science Edition), 2014, 44(3), 522–525.

3. Liao T. J., Stiitzle T., de Oca M., et a1. A Unified Ant
Colony Optimization Algorithm for Continuous Optimization.
European Journal of Operational Research, 2014, 234(3), 597–
609.

4. Wang L., Li M., Liu Z. H. Application of an Ant Colony
Optimization based on Attractive Field in TSP. Journal of
Jiangsu University, 2015, 36(5), 573–582.

5. Bullnheimer B., Hartl R. F., Strauss C. A New Rank Based
Version of the Ant System – A Computational Study. Central
European Journal for Operations Research and Economics,
1999, 7(1), 25–38.

6. Stutzle T., Hoos H. MAX-MIN Ant System. Future Generation
Computer Systems, 2000, 16(8), 889–914.

7. Karaboga D. An Idea based on Honey Bee Swarm for Numerical
Optimization. Kayseri: Erciyes University, 2005, pp. 133–151.

8. Morteza M., Hadi S. S. An Efficient ACO-based Algorithm for
Scheduling Tasks onto Dynamically Reconfigurable Hardware
using TSP-likened Construction Graph. Appl Intell, 2016,
45(3), 695–712.

9. Chitty D. M. Applying ACO to Large Scale TSP Instances. UK
Workshop on Computational Intelligence, 2017, pp. 104–118.

10. Lin X. J., Ye D. Y. An Improved Artificial Bee Colony Algorithm
with Guided Normative Knowledge. Pattern Recognition and
Artificial Intelligence, 2013, 26(3), 307–314.

11. Duan Y. M., Xiao H. H. Improved Fruit Fly Algorithm for TSP
Problem. Computer Engineering and Applications, 2016, 52(6),
144–149.

12. Yang J., Zheng Y., Ma L. Improved Eat Swarm Optimization
for Solving Traveling Salesman Problem. Application Research
of Computers, 2017, 34(12), 3607–3610.

13. Chen J. R., Chen J. H. Discrete Fishing Strategy Optimization
Algorithm. Computer Science, 2017, 44(6), 141–144.

14. Ardalan Z., Karimi S., Poursabzi O., Naderi B. A Novel
Imperialist Competitive Algorithm for Generalized Traveling
Salesman Problems. Appl. Soft Comput. 2015, 26, 546–555.

15. Helsgaun K. Solving the Bottleneck Traveling Salesman Prob-
lem using the Lin-Kernigan-Helsgaun Algorithm. Technical
Report, Computer Science, Roskilde University, 2014, 59–71.

16. Lin J. B., Chen Z. X., Yao G. X. An Improved AS Algorithm and
Result Analyzing based on Domain and its Density. Engineering
Journal of Wuhan University, 2016, 49(4), 627–634.

17. Li Y., Zhou Z. H., Zhao W. J. A Hierarchical Path Finding
Algorithm based on Map Distribution Inform. Journal of
Chinese Computer System, 2013, 34(11), 65–76.

18. Mollajafari M., Shahhoseini H. S. An Efficient ACO-based Al-
gorithm for Scheduling Tasks onto Dynamically Reconfigurable
Hardware using TSP-likened Construction Graph. Appl Intell
2016, 45, 695–712.

19. Guo Z. H., Jin L., Zheng C. Y. Study on Improved Method
of Neural Network to Solve TSP. Computer Simulation, 2014,
31(4), 355–358.

20. De Santis R., Montanari R., Vignali G., et al. An Adapted Ant
Colony Optimization Algorithm for the Minimization of the
Travel Distance of Pickers in Manual Warehouses. European
Journal of Operational Research, 2018, 267(1), 120–137.

204 Engineering Intelligent Systems

