
Eng Int Syst (2019) 4: 155–166
© 2019 CRL Publishing Ltd Engineering

Intelligent Systems

Computer Data Processing Mode
in the Era of Big Data

Lian Jin∗

School of Mathematics and Computer Science, Jianghan University, Wuhan, Hubei, 430056, China

The current big data cluster mining technique is based on the sampling of data, and the representative data is used to conduct the cluster analysis
with point-to-face. For the processing of massive amounts of data, sample extraction probability is the most commonly-used method. However, this
approach does not take into account the uneven distribution of the data. This research analyzes the data mining algorithms applied in the era of big
data from the perspective of computer algorithms, and proposes an improved algorithm for big data processing. Moreover, this paper compares the
performance of the proposed algorithm with that of the traditional algorithm. The research shows that the method proposed in this study is effective
and applicable, and can provide a theoretical foundation for subsequent related research.

Keywords: big data; data mining; computer data; data processing; cloud computing

1. INTRODUCTION

In recent years, with the rapid development of the mobile
Internet and the advancement of sensor technology, data
generation is accelerating rapidly, and the scale of data is
increasing enormously. This explosive growth of data requires
a highly efficient data processing technology. Many research
institutes and companies have developed tools for processing
big data, such as Hadoop [1], Spark [2], Hive [3], and Flink
[4], to name a few. For the average user, building a big
data processing platform is cumbersome and expensive, so
mature big data processing cloud services such as Alibaba
Cloud E-MapReduce, Amazon EMR [5] and Microsoft Azure
HDInsight [6] attract a large number of users.

Users often use performance metrics such as throughput
and latency when analysing the performance of big data
processing platforms. However, in the cloud environment,
these performance indicators are not enough to evaluate
big data processing platforms. In addition to assessing
the system’s traditional performance metrics, performance
evaluation in the cloud environment comprises cloud-related
metrics that users care about, such as scalability, resilience,
fault tolerance, and reliability. The measurement of these

∗Email: lianjin@jhun.edu.cn

indicators is more difficult than that used for traditional
performance indicators. The cloud is a heterogeneous system
environment. The load and application on the cloud are
complex and changeable. Since there are many users in the
cloud environment, the load scale performed by the users
cannot be determined. These uncertainties exacerbate the
difficulty of measurement [7]. Currently, there is no effective
model for the measurement of the scalability of cloud services.

This paper proposes a scalability measurement model for
providers and users of big data processing platforms to
facilitate their analysis of the scalability of big data platforms.
At the same time, this study provides a useful reference
for community personnel wishing to optimize Hadoop and
Spark. In addition, this paper offers guidance on effective
performance optimization to users who are deploying and
using big data processing platforms.

2. RELATED WORK

The genetic algorithm [8] is a randomization algorithm for
global search proposed in the 1970s. It is intended to simulate
the evolution process in nature involving the survival of the
fittest and genetic selection. The ant colony algorithm [9] was

vol 27 no 4 December 2019 155



COMPUTER DATA PROCESSING MODE IN THE ERA OF BIG DATA

proposed in the 1990s as a simulated evolutionary algorithm,
intended to simulate the process of an ant search path. The
immune algorithm mimics the process by which human
immune cells produce antibodies to prevent disease, and is
inspired by cell theory. The K-means algorithm [10] is one of
the classic clustering algorithms and is invaluable to research.
It is widely used in many fields such as text clustering and
natural language processing. The advantages are its simple
ideas, fast convergence, and easy implementation. The
disadvantages are that it is sensitive to the initial clustering
center [11], the local optimal solution is easy to form, and
the running complexity is high, especially in the big data
environment. In the initial study, Hu [12] defined the objective
function as the sum of squares, proved the convergence of
the sum of squares, and used it as a measure of clustering
quality. In 1978, Shah [13] demonstrated that the best
segmentation point can be found by using the probability
convergence point. Bernasconi [14] validated Hartigan’s
conclusions in multidimensional space and derived a new
standard for measuring clustering quality: under the premise
of ensuring square sum convergence, it is necessary to ensure
that all cluster centers also converge. There have been other
corresponding clustering improvement studies in recent years
both in China and abroad. Hou [15] proposed an algorithm
based on initial weight and sequential search for initial cluster
centers. Dat [16] proposed a density-based solution to select
the initial clustering center. They are all optimized by K. The
initial center of the means algorithm is selected to improve
the accuracy of the cluster.

3. COMMON METRICS AND
CLASSIFICATIONS FOR
SCALABILITY

Scalability is a performance evaluation indicator of a system or
service. It is used to define the performance of a system when
it is facing a load by increasing the processor or improving
the configuration of the machine. Throughput refers to the
number of requests processed by the system within a particular
unit of time. In big data processing, throughput can represent
the speed of data processing, as shown in equation (1).
Throughput TP can be calculated from data volume D and task
execution time T. When scalability is measured by throughput,
this is often done by calculating the speedup of throughput.

TP = D

T
(1)

Scalability can be divided into three categories: linear
expansion, sublinear expansion, and superlinear expansion.
As shown in Figure 1, top to bottom are linear expansion,
superlinear expansion, and sublinear expansion, respectively.
When the acceleration ratio shows a linear growth, it is a
linear expansion; when it is lower than the linear expansion,
it is a sublinear expansion; when it is higher than the linear
expansion, it is a superlinear expansion.

As shown in equation (2), this paper defines an indicator
P as the performance resource rate. In the formula, T
represents the time spent on task execution, and its unit is

second. C represents the average resource consumption (CPU,
memory, network, etc.) of the task execution process. The
resource consumption here refers to the average number of
resources consumed during the execution of the task. The
resource selected in this paper is the CPU.

P = 1

T ∗ C
(2)

C = R ∗ U (3)

C is calculated by equation (3), R represents the total
amount of resources, and U represents the average resource
usage rate during task execution. Equation (4) is a calculation
method of scalability. There is a total of n loads. i represents
the i-th load, Si represents the size of the i-th load scalability,
D(i) and Da(i) represent the load scale of the i-th load before
and after the platform expansion and its unit is GB, P(i) and
Pa(i) represent the performance resource rate P before and
after expansion, respectively. After calculation, the scalability
can be obtained. When the result is close to 1 or greater than
1, the scalability is good. When the result is greater than 1,
it is a superlinear extension, and when the result is equal to
1, it is a linear extension, and the closer the result is to 0, the
worse the scalability.

Si = Da(i) ∗ Pa(i)

D(i) ∗ P(i)
(i = 1, 2, 3, · · · , n) (4)

Since the scalability of different loads may vary, as shown
in Equation (5), this paper calculates the scalability fluctuation
of the big data processing platform when the load changes by
calculating the standard deviation of the scalability S. In the
formula, n means a total of n loads, and i represents the i-th
load, ranging from 1 to n. Si is the scalability of the i-th load.
After calculation, it is found that the closer the value of V is to
0, the more stable is the scalability of the big data processing
platform. The larger the value of V, the more unstable is the
scalability of the processing platform, and the worse is the
performance.

V =

∑ (
Si − 1

n

n∑
i=1

Si

)2

n
(i = 1, 2, 3, · · · , n) (5)

4. EXPERIMENTAL CONFIGURATION
AND ANALYSIS

4.1 Experimental Configuration

The experiments in this study were conducted on the Hadoop
platform of Alibaba Cloud E-MapReduce. Table 1 shows
the configuration of the Alibaba Cloud Universal instance.
Due to limited funding, the experiment uses a small type of
configuration, the number of CPU cores is four, the CPU
model is Intel Xeon E5, the system is Centos, the memory
size is 16GB, the disk storage is four 80GB ordinary SAS hard
disks, and the network is a classic 8MB network. Moreover,
the version of Alibaba Cloud E-MapReduce is 3.4.3, the
version corresponding to Hadoop is 2.7.2, and the version
of Spark is 2.1.1.

156 Engineering Intelligent Systems



L. JIN

Figure 1 Figure 1Scalability classification.

Table 1 Alibaba Cloud Instance Type.

Type CPU virtual core Memory size (GB) Storage size (GB)

Small 4 16 4*80
Medium 8 32 4*80
Large 16 64 4*80

To measure the scalability of Hadoop in a cloud environ-
ment, this studyselects four different loads: TeraSort, Sort,
WordCount, WordMean. The first two are I/O intensive
and the last two are CPU intensive. Table 2 shows the type
of evaluation load, the size of the data used, and generation
methodof the data set.

4.2 Experiment Analysis

The vertical axes of Figures 2 and 3 show the execution time
and average CPU usage of the I/O intensive load TeraSort and
Sort and the CPU-intensive load WordCount and WordMean
on the Hadoop platform, respectively, and the horizontal axis
represents the number of data nodes.

As shown in Figure 2, the execution time of the four loads
decreases as the node size increases. When processing data
of the same size, the execution speed of Sort load is faster
than that of TeraSort. The main reason is that the data format
is different. The object of TeraSort load sorting is text data,
which comprises Big Data Bench based on random words
generated by Wikipedia. However, the sorting object of the
Sort load is a random binary sequence file.

As can be seen from Figure 3, in terms of average CPU
usage, both the TeraSort and Sort loads increase first and then
shrink. When the data node is two, the execution time of
the load is long, and the average CPU usage of TeraSort and
Sort is relatively low. When the number of data nodes is four,
eight, or 12, the CPU usage is increasing while performance is
improving. After increasing to 16 data nodes, the performance

improvement has slowed down compared to 12 data nodes,
and CPU usage has also decreased. In addition, the average
CPU usage of the Sort load is lower than that of TeraSort.

Figure 4 and Figure 5 show the execution time and average
CPU usage when running different data-scale loads on a
cluster of eightdata nodes. The phenomenon is that as the
data scales up, the execution time increases, the average CPU
usage increases, and the CPU usage is lower when the load
size is small.

5. EXPERIMENT ANALYSIS

5.1 Comparison Between HDFS and OSS

Figure 6 and Figure 7 show the execution time when the
WordCount load uses the local file system, HDFS, and the
remote storage service, OSS. On the Spark platform, the
execution speed of HDFS is faster. On the 16 nodes, the speed
difference between the two is not large, and the difference is
within 1%.

Figure 8 and Figure 9 show the task execution time when
Hadoop performs Grep load using HDFS and OSS. On the
Spark platform, the execution speed of the HDFS is faster
than the OSS regardless of the size of the cluster and data
setOn the Hadoop platform, when there are twodata nodes
and fourdata nodes, the execution speed of the OSS is faster
than that of the HDFS. If the cluster continues to expand, the
HDFS execution speed is dominant.

vol 27 no 4 December 2019 157



COMPUTER DATA PROCESSING MODE IN THE ERA OF BIG DATA

Table 2 Dataset size and generation method.

Evaluation load Type Data set size Generation method of the data

TeraSort I/O intensive 128GB TeraGen
Sort I/O intensive 128GB RandomWriter
WordCount CPU intensive 128GB RandomTextWriter
WordMean CPU intensive 128GB RandomTextWriter

Figure 2 Execution time of load.

Figure 3 Average CPU usage of the load.

To analyze why Spark uses HDFS better than OSS,
this chapter selects two samples and shows the stages of
performing a 40GB WordCount load and a 60GB Grep load
on four data nodes. The Spark task is called Job. AJob can be

divided into multiple Stages, and each Stage is divided into
multiple Tasks. Since Spark also includes the startup phase
and the final cleanup phase during execution, the analysis
process here also includes both. Equation (6) shows the

158 Engineering Intelligent Systems



L. JIN

Figure 4 Execution time of different data size loads.

Figure 5 Average CPU usage for different data size loads.

composition of Spark’s execution time. J represents the total
execution time of the job, n is the total number of stages
included in a job, S is the start time of the task, St (i) is the
run time of the i th stage, and i starts at 1 and ends at n.C is
the time spent in the Spark task cleanup phase.

J = S +
n∑

i=1

St (i) + C (6)

Figure 10 records the total value of network inbound and
outbound packets for the nodes of the cluster during Word-
Count load execution. It can be seen that WordCount has a lot
of network transmission when performing tasks on the OSS
system, but it is rare on HDFS. This phenomenon confirms
that network transmission can affect OSS performance.

Hadoop also has network transmission and network latency
when using OSS, but it is faster to use OSS than HDFS. To

vol 27 no 4 December 2019 159



COMPUTER DATA PROCESSING MODE IN THE ERA OF BIG DATA

Figure 6 Execution time spent by Hadoop executing WordCount load.

Figure 7 Execution time spent by Spark executing WordCount load.

explain the reason for this phenomenon, this study observed
the difference between WordCount and Grep when processing
20GB of data. The difference is that when the algorithm uses
OSS to perform tasks, the number of Maps generated is 40.
However, when the algorithm uses HDFS to perform tasks,

the number of Maps generated is 160. The default number
of Maps is determined by size of the HDFS file block. As
shown in equation (7), Mn represents the number of Maps,
T f represents the size of the input file, and Bs represents the
size of the HDFS file block.

160 Engineering Intelligent Systems



L. JIN

Figure 8 Execution time spent by Hadoop executing Grep load.

Figure 9 Execution time spent by Spark executing Grep load.

Mn = T f /Bs (7)

Typically, the file size set by the user is 64MB, while the
default size of Alibaba Cloud is 128MB. Therefore, when
Hadoop processes 20GB of data on Alibaba Cloud, if the
file is placed on HDFS, the number of Maps is 120. The
20GB file in this article consists of 40 small files of 512MB;
because OSS does not perform fragmentation, the number

of Maps is 40 when using OSS. In order to verify that the
number of Maps will affect the execution speed of the task,
after changing the file block size to 512MB and restarting all
components, two sets of experiments were conducted in this
study. It was found that HDFS is faster than OSS when the
number of Maps is consistent. The experimental results are
shown in Figures 11 and 12.

vol 27 no 4 December 2019 161



COMPUTER DATA PROCESSING MODE IN THE ERA OF BIG DATA

Figure 10 Network Packets when WordCount runs 40GB of data.

Figure 11 WordCount experiment after modifying the file block size.

If the file block is set too small, the number of Maps will
increase, and when the cluster size is small, the pressure on
each machine will increase, and the results of the Map phase
will need to be pulled at the beginning of the Reduce phase. If
the number of Maps is too large, the pull time will be longer
and the performance will be degraded.

The difference between Sort and the first two loads is that
Sort is an I/O intensive load and has a large amount of write
data. This load can test the performance of HDFS and OSS in
terms of write performance. Figure 13 and Figure 14 show the
execution of the Sort load on Hadoop and Spark, respectively.
The results show that the execution speed of OSS is slower
than that of HDFS.

Network delay and HDFS data localization lead to OSS
having a slower execution speed than that of HDFS,
and the I/O-write performance of OSS is quite different
from that of HDFS. This paper does not recommend
the use of OSS for applications that write a greater
amount ofdata. In addition, HDFS’s file block settings
will affect Hadoop’s processing performance. For CPU-
intensive applications, we can optimize the performance by
increasing the file to an appropriate size and reducing the
number of Map operations. For cloud service providers,
the ‘write’ performance of OSS needs to be improved,
which is one of the key factors affecting the customer
experience.

162 Engineering Intelligent Systems



L. JIN

Figure 12 Grep experiment after modifying the file block size.

Figure 13 Execution time spent by Hadoop executing the Sort load.

5.2 Performance Comparison Between
Horizontal Expansion and Vertical
Expansion

Figures 15, 16, and 17 show the performance of Hadoop on
different scales of input data using different extensions when
running WordCount, Grep, and Sort loads, respectively. The
experimental results of the WordCount and Grep load show
that the performance of the vertical expansion mode is better

than the horizontal expansion mode, but the result of the Sort
load is just the opposite.

The reason for this is that when Hadoop runs CPU-intensive
workloads such as WordCount and Grep, data shuffling
takes more time. During the load operation, although the
overall configuration of the horizontal expansion mode and
the vertical expansion mode are the same, the performance
of the vertical expansion mode is superior to the horizontal
expansion mode, and the task execution time is also less. The

vol 27 no 4 December 2019 163



COMPUTER DATA PROCESSING MODE IN THE ERA OF BIG DATA

Figure 14 Execution time spent by Spark executing the Sort load.

Figure 15 Execution time of vertical and horizontal expansion when Hadoop runs WordCount.

reason is that the intermediate result of the data shuffling
process is to be transmitted across nodes and the transfer
between multiple data nodes takes more time than does a
small number of data nodes. For I/O intensive loads such
as Sort, the I/O operation takes a lot of time, and the I/O
performance of the extended mode determines the execution
performance of the task. In the experiment of this paper, the
horizontal expansion method performs I/O operation on a
disk of 8 nodes, and the vertical expansion mode performs
I/O operation only on a small number of disks of 2 nodes.

The I/O operation on 8 nodes is less interfered by other
I/O operations, so the performance of vertical expansion is
better.

6. CONCLUSION

The development of big data technology is advancing in
parallel with the rapid development of the information
industry. Big data platforms such as Hadoop and Spark have

164 Engineering Intelligent Systems



L. JIN

Figure 16 Execution time of vertical and horizontal expansion when Hadoop runs Grep.

Figure 17 Execution time of vertical and horizontal expansion when Hadoop runs Sort.

been widely used in industry, and many network data items
are used as rewards for everyone to calculate and learn. At
the same time, the increase in the amount of data also makes
it difficult for people to obtain information of interest. The
cloud is a heterogeneous system environment. The load and
application on the cloud are complex and variable. Moreover,
since there are many users in the cloud environment, the

scale of the load performed by the user cannot be determined.
These uncertainties increase the difficulty of measurement.
Currently, there is no effective measurement model for the
scalability measure of cloud services. The work of this
paper proposes a scalable measurement model for providers
and users of big data processing platforms to facilitate the
scalability analysis of big data platforms. Moreover, the

vol 27 no 4 December 2019 165



COMPUTER DATA PROCESSING MODE IN THE ERA OF BIG DATA

paper provides a reference for community personnel who
wish to optimize Hadoop and Spark. In addition, users can
obtaineffective performance optimization guidance from this
paperwhen deploying and using big data processing platforms.

REFERENCES

1. Zhu L, Li H, Feng Y. Research on big data mining based on
improved parallel collaborative filtering algorithm[J]. Cluster
Computing, 2018(5):1–10.

2. Sethi K, Ramesh D. HFIM: a Spark-based hybrid frequent
itemset mining algorithm for big data processing[J]. The Journal
of Supercomputing, 2017.

3. Liu J W . Using Big Data Database to Construct New
Gfuzzy Text Mining and Decision Algorithm for Targeting and
Classifying Customers[J]. Computers & Industrial Engineering,
2018.

4. Liu Y, Ma C, Xu L, et al. MapReduce-based parallel GEP algo-
rithm for efficient function mining in big data applications[J].
Concurrency and Computation: Practice and Experience,
2017:e4379.

5. Njah H, Jamoussi S, Mahdi W. Deep Bayesian network archi-
tecture for Big Data mining[J]. Concurrency and Computation
Practice and Experience, 2018(1):e4418.

6. Dhyaram L P, Vishnuvardhan B. Classification Perfor-
mance Improvement Using Random Subset Feature Selec-
tion Algorithm for Data Mining[J]. Big Data Research,
2018:S221457961730179X.

7. Alves W, Martins D, Bezerra U, et al. A Hybrid Approach for Big
Data Outlier Detection from Electric Power SCADA System[J].
IEEE Latin America Transactions, 2017, 15(1):57–64.

8. Wei Z, Li X, Li X, et al. Medium- and long-term electric power
demand forecasting based on the big data of smart city[J].
Journal of Physics Conference Series, 2017, 887(1):012025.

9. Yun W, Zhiquan H, Hao L, et al. A Fast Projection-Based Al-
gorithm for Clustering Big Data[J]. Interdisciplinary Sciences:
Computational Life Sciences, 2018.

10. Dawei L, Guangren S. Optimization of common data mining
algorithms for petroleum exploration and development[J]. Acta
PetroleiSinica, 2018.

11. Jiang D, Luo X, Xuan J, et al. Sentiment Computing for the News
Event Based on the Big Social Media Data[J]. IEEE Access,
2016, PP(99):2373–2382.

12. Hu L, Ni Q, Yuan F. Big Data Oriented Novel Background
Subtraction Algorithm for Urban Surveillance Systems[J]. Big
Data Mining and Analytics, 2018, 1(02):57–65.

13. Shah Z, Mahmood AN, Barlow M, et al. Computing Hierar-
chical Summary from Two-Dimensional Big Data Streams[J].
IEEE Transactions on Parallel and Distributed Systems, 2018,
29(4):803–818.

14. Bernasconi S, Comini A, Corbella A, et al. Semi-automated
De-identification of German Content Sensitive Reports for
Big Data Analytics[J]. RöFo - Fortschritte auf dem Gebiet
der Röntgenstrahlen und der bildgebendenVerfahren, 2017,
189(07):661–671.

15. Hou Y, Guo H, Nevin N. Research and Prospect of Multimedia
Information Data Mining[J]. Recent Patents on Computer
Science, 2017.

16. Dat N D, Phu V N, Tran V T N, et al. STING Algorithm Used
English Sentiment Classification in a Parallel Environment[J].
International Journal of Pattern Recognition and Artificial
Intelligence, 2017, 31(7).

166 Engineering Intelligent Systems


