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In this paper, Iterative Learning Control (ILC) is used as the core algorithm. By improving ILC algorithm, a control algorithm suitable for trajectory
tracking of industrial robots is proposed. Without resetting the initial conditions, an iterative learning control method is designed to accelerate the
suppression of random initial state errors. A modified initial state error interval is defined, which decreases with the number of iterations. Combining
with the iterative learning control algorithm, the industrial robot can track the trajectory without resetting the initial conditions, and the tracking
error converges to zero asymptotically. In terms of A norm, the convergence of the iterative learning control algorithm is proved. The simulation
experiment results of the iterative learning control algorithm for accelerating the suppression of random initial state error are given, and compared
with the simulation experiment results of the iterative learning control method without acceleration suppression random initial state error. The results
show that the proposed condition-free acceleration is effective. The iterative learning control method for suppressing the random initial state error has
a good inhibitory effect on the random initial error of industrial robots.
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1. INTRODUCTION

Industrial robots have become an important part of industrial
development. They can replace heavy and repetitive human
labor, and are an indispensable piece of equipment for large-
scale and accurate manufacturing, as well as being deployed
in dangerous, harsh and extreme working environments. In
China in recent years, there has been a rapid development in
the field of industrial robots. In 2013, the sales of industrial
robots in China surpassed those of Japan for the first time, and
China became the world’s largest manufacturer and vendor of
industrial robots [1]. In 2018, China’s industrial robot sales
have reached 156,400 units, ranking first in the world for
five consecutive years. Although the sales and retention of
industrial robots rank first, there are 478 industrial robots for
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every 10,000 workers in Korea, and the density of industrial
robots in China is only 36, which is more than ten times less
than Korea, so the future industrial robots market in China is
huge [2].

The control of the trajectory of industrial robots is an
important part of industrial automation, ensuring that the
tracking error of industrial robots is reduced to zero, which
guarantees that the mechanical arm system can follow the
desired trajectory established by humans [3]. As a typical
time-varying, highly nonlinear and strongly coupled dynamic
system, it is difficult for industrial robot systems to obtain
accurate dynamic models in actual modeling [4]. It is
especially important to choose appropriate control algorithms.

Japanese scholar Uchiyama first proposed the idea of
Iterative Learning Control (ILC) in 1978 [5]. The iterative
learning control method is widely used for the control of
industrial robots. This method enables the control system
to self-learn and self-improve. Iterative learning control is
applied to controlled systems with repetitive motion properties
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to achieve full tracking of tasks at finite intervals [5,6]. By
controlling the control system, the undesired control signal
is corrected by the deviation of the output signal from the
given target, so that the tracking performance of the system
is improved. The study of iterative learning control is very
important for dynamic systems with strong nonlinear cou-
pling, high positional repetitiveness, difficult modeling and
high-precision trajectory tracking control requirements [7].

In the control system, the initial value conditions directly
affect the convergence of the system. Using a restricted
equivalent form of the singular system, TianSenping scholars
proposed an open-loop PD-type iterative learning law to study
the state tracking problem of the system [8]. At present,
in many research studies on iterative learning control, it
is assumed that the initial state of each industrial robot is
exactly the same as the initial state of the desired trajectory.
However, in terms of practical application, the two cannot
be completely equal. The initial value problem has been
studied by many scholars. Heinzinger and other scholars
have given the D-type iterative learning control that introduces
the forgetting factor in order to eliminate the influence of the
initial deviation on the system [9]. Arimoto and other scholars
further discussed the influence of the initial deviation size
on the convergence of the iterative learning algorithm, and
the forgetting factor is essential to the algorithm convergence
[5,10]. In 1991, Lee et al. pointed out that the cause of system
instability is the difference of the initial value of the iterative
learning algorithm. Later, the ILC algorithm with initial value
correction is proposed, and the ILC algorithm with fixed
initial value deviation is better than the random one [11].
Based on the ILC algorithm of fixed initial value deviation
analyzed by the above scholars, Sun Mingxuan proposed the
ILC algorithm with initial value correction in 2014, but the
algorithm needs to ensure that the initial deviation is bounded
and cannot deal with the control problem with stochastic initial
value deviation system [12]. For the system control problem
with random initial value deviation, Lv Qing proposed an
ILC algorithm with a modified interval, which decreases with
the number of iterations [13]. The algorithm can effectively
suppress the influence of the initial value deviation on the
system output. In the PID algorithm, Park discusses the
iterative learning control problem of linear system and a class
of nonlinear systems with initial value deviation, and analyzes
the influence of learning gain selection on the initial value
deviation [14]. The iterative learning control problem with
a fixed offset of the initial state and the expected initial state
is discussed. A PD-type iterative learning control algorithm
with feedback auxiliary is proposed to realize the asymptotic
tracking of the expected trajectory of the system output. Li
Yan et al. [15,16] extended the traditional iterative learning
control time domain and frequency domain analysis methods
to a class of fractional order nonlinear systems; they proposed
a new type of fractional iterative learning control framework
and simplified the convergence conditions, and solved the
equivalence problem of two kinds of fractional order iterative
learning control convergence conditions with the constant
gain.

During continuous and repetitive experiments, if the initial
conditions are reset every time, the practical results of
the system test results are greatly reduced. In response to

this problem, in 2000, Korean scholar K Wang added a
proportional term and an error integral term to the traditional
D-type iterative learning control algorithm in order to reduce
the influence of initial error on the control result [17,18]. In
1999, Chen used an initial state learning scheme combined
with the traditional D-type iterative learning control algorithm
to learn the law [19,20]. It may not be necessary to reset
the initial conditions every time, and obtain the convergence
boundary of the tracking error, depending on the uncertainty
of the system and the external. The interference determines
the convergence boundary without relying on the initial error.
This paper proposes an iterative learning control method
for accelerating the suppression of the random initial state
error without reset condition, which is used to accelerate
the suppression of initial random error. In 2013, Jiang Yue
of Northeastern University proposed to increase the initial
learning and design the D-type iterative learning control law
with initial learning based on the original D-type learning
law [21,22,23]. This method can eliminate the influence on
the trajectory tracking effect of the initial migration. The
downside is that the convergence speed of the algorithm is
much lower than that prior to the initial state being learned
[24,25].

Industrial robots make important content in the develop-
ment process of our country, especially in the manufacturing
industry [26]. Good stability, flexibility, high precision and
high efficiency directly affect the efficiency and quality of the
industry’s products, and even affect the development process
of the national manufacturing industry [27,28,29]. The
stability of the manipulator system is an important research
focus. The initial value conditions affect the convergence and
convergence speed of the system. This paper is based on the
PD type iterative learning control algorithm for the robotic
arm system with external interference. The iterative learning
control method for accelerating the suppression of random
initial state errors is discussed. The influence of the method
on the convergence and convergence speed of the manipulator
system is analyzed.

2. PROBLEM STATEMENT AND
CONTROLLER DESIGN

Consider the n-degree-of-freedom manipulator system dyna-
mics model, the expression is as follows:

M(qk)q̈k + C(qk, q̇k)q̇k + G(qk)+ d(t) = τ (t) (1)

where t denotes time, Non-negative integer k represents the
number of iterations, q̈k, q̇k , and qk ∈ Rn are acceleration,
speed and position, respectively. M(qk) ∈ Rn×m is inertia
matrix, C(qk, q̇k) ∈ Rn×m is the centrifugal force and the
Coriolis force, G(qk) ∈ Rn is the gravity matrix, d(t) is the
external disturbance, and τk(t) ∈ Rn is the input torque.

The mechanical system dynamics model (1) has the
following properties

Property 1 The inertia matrix M(qk) is positively bounded
and satisfies the following conditions:
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0 < β1 < ‖M(qk)‖ < β2 (2)

where 0 < β1 < β2.

Property 2 The inertia matrix M(qk) satisfies the global
Lipschitz continuous condition:

‖M(qk+1 − M(qk)‖ ≤ lm‖qk+1 − qk‖ (3)

where lm is positive.

Property 3 G(qk) satisfies the global Lipschitz continuous
condition:

‖G(qk+1)− G(qk)‖ ≤ gm‖qk+1 − qk‖ (4)

where gm is positive.

Property 4 C(qk, q̇k) is bounded.

C(qk, q̇k) ≤ Cm‖q̇k‖ (5)

Lemma 1 Considering a continuous function f (x, y), x∈X ,
X = {x ∈ R p‖x | ≤ ρi , 1 ≤ i ≤ p}, ρi ≥ 0, so there exists
L(y), make that

‖ f (σ (x1), y)− f (σ (x2), y)‖ ≤ L(y)‖x1 − x2‖,
∀x1, x2 ∈ R p,∀y ∈ Rq (6)

where ‖σ(x1)− σ(x2)‖ ≤ ‖x1 − x2‖.

Lemma 2 There exists z(t) = [z1(t), z2(t), . . . zn(t)] ∈
Rn, t ∈ 0, T , make that(∫ t

0
‖z(s)‖ds

)
e−λt ≤ 1

λ
‖z(t)‖λ (7)

In this paper, we make the following basic assumptions:

Assumption 1 Gravity matrix ‖G(qk)‖ is bounded:
‖G(qk)‖ ≤ lg, lg , is obtained from the actual limits of the
system.

Assumption 2 q̇k(t) is bounded, ‖q̇k(t)‖ ≤ Vm, Vm is
obtained from the actual limits of the system.

Assumption 3 External interferenced (t) is bounded,
‖d(t)‖ ≤ ld , ld is obtained from the actual limits of the
system.

For systems with random initial value deviations, we define
a random error correction interval that varies with the number
of iterations, and assume that the interval decreases as the
number of iterations increases, thus reducing the time required
to correct the random error. The controller is then designed
to solve the problem whereby the robotic arm system needs
to reset the initial conditions each time.

For a robotic arm system with random initial value
deviation, we designed the following iterative control learning
law:

τk+1(t) = τk(t)+ M(q)
⌊

Kdėk + K pek(t)
⌋ + φk(t)Xk(0)

(8)

ϕk =
⎧⎨
⎩

eAt
(

2ak

h

(
1 − ak

h

))
, t =∈

[
0, h

ak

]
0, t ∈

[
h
ak , T

] (9)

Xk(0) = Dek(0)+ xk(0)− xk+1(0) (10)

ėk+1(0) = ėk(0)+ Kkek(0) (11)

If ‖In − Kd‖ < 1, then the closed loop system is stable,
and the following expression holds

lim
k→∞

(qd(t)− qk(t)) = lim
k→∞

(q̇d(t)− q̇k(t)) = 0 (12)

where ek = qd − qk, Kd , K p , are symmetric positive definite
matrix. D = ‖In − Kd‖T , Ik ∈ Rn×n is unit matrix.

3. CONVERGENCE ANALYSIS

For convenience, the time t will be omitted and defined as
follows

M(qk) ≡ Mk ,G(qk) ≡ Gk (13)

According to (1), we have

q̈k = M−1
k τu − M−1

k [c(q, qk)q̇k + G(qk)+ d(t)] (14)

xk(t) =
{

x1k = qk(t)

x2k(t) = q̇k(t)
(15)

where xk(t) = [
x T

1k(t) x T
2k(t)

]T
.

(14) and (15) yield

ẋk(t) =

⎧⎪⎨
⎪⎩

ẋ1k(t) = x2k(t)

ẋ2k(t) = M−1
k τk(t)− M−1

k C(qk, q̇k)q̇k

+Gk + d(t)

(16)

so
xk(t) = Axk(t)+ Bτk + ψk(t) (17)

where A =
(

On In

On On

)
A = ( On

M−1
k

)
, ψk(t) = ( On

fk(t)

)
,

fk(t) = −M−1
k [C(q, q̇k)q̇k + Gk + d],

For arbitrary τk(t) =, t ∈ 0, T , The general solution of
(17) is:

xk(t) = eAt xk(0)+
∫ t

0
eA(t−s)Bτk(s)ds+

∫ t

0
eA(t−s)ψk(s)ds

(18)
where eA(t−s) is the state transition matrix of the system.

The introduction of (18) into (19), yields

xk+1 − xk =
∫ t

0
eA(t−s)(ψk+1(s))− ψk(s)ds

+
∫ t

0
eA(t−s)φk(s)Xk(0)ds

+
∫ t

0
eA(t−s)B Mk Kdėk(s)ds

+
∫ t

0
eA(t−s)B Mk K pek(s)ds

+ eAt (xk+1(0)− xk(0))

=
∫ t

0
eA(t−s)(ψk+1(s)− ψk(s))ds

+
∫ t

0
eA(t−s)φk(s)Xk(0)ds

+ eAt [Dek(0)− Xk(0)]

vol 27 no 4 December 2019 203



SIMULATION ANALYSIS OF RANDOM INITIAL ERROR WITH ITERATIVE LEARNING CONTROL METHOD FOR ROBOT ARMS

+
∫ t

0
eA(t−s)B Mk Kd ėk(s)ds

+
∫ t

0
eA(t−s)B Mk K pek(s)ds (19)

where B Mk Kd = D, B Mk K p = P, D = [
On K T

d

]T
, P =[

On K T
p

]T

so

xk+1(t)− xk(t) = −eAt Xk(0)+
∫ t

0
AeA(t−s)ϕk(s)Xk(0)ds

+ eAt Dek(0)+
∫ t

0
eA(t−s)Pek(s)ds

+
∫ t

0
eA(t−s)ψk+1(s)− ψk(s)ds +

∫ t

0
eA(t−s)Dėk(s)ds

(20)

According to the step-by-step integral formula, by (9) and
(20), we get

xk+1(t)− xk(t) = −Dek(t)−
∫ t

0
AeA(t−s)Dek(s)ds

−
∫ t

0
eA(t−s)[ψk+1(s)− ψk(s)]ds

− eAt Xk(0)

[∫ t

0
e−Asϕk(s)ds − 1

]
−

∫ t

0
eA(t−s)Pek(s)ds

(21)

The introduction of xd(t) = [
qt

d q̇T
d

]T
into (21), yields

Ek+1(t)− Ek(t) = −Dek(t)−
∫ t

0
AeA(t−s)Dek(s)ds

−
∫ t

0
eA(t−s)[ψk+1(s)− ψk(s)]ds

− eAt Xk(0)

[∫ t

0
e−Asϕk(s)ds − 1

]

−
∫ t

0
eA(t−s)Pek(s)ds (22)

where Ek(t) = [
eT

k ėT
k

]
.

When t ∈
[

h
ak , T

]
, by (10), we get

eAt Xk(0)

[∫ t

0
e−Asϕk(s)ds − 1

]
= 0 (23)

The introduction of (23) into (22), and taking the norm,
yields

‖Ek+1(t)‖ ≤ ‖Ek(t)− Dek(t)‖ +
∫ t

0
‖eA(t−s)‖‖ek(s)‖ds

+
∫ t

0
‖eA(t−s)‖‖P‖‖ek (s)‖ds

+
∫ t

0
‖eA(t−s)‖‖ψk+1(s)− ψk(s)‖ds (24)

as Ek(t) = [
eT

k ėT
k

]T
, obviously, ‖Ek+1(t) − Dek(s)‖ ≤

‖I2 − D‖‖Ek (t)‖, ek(s) ≤ ‖Ek(t)‖, where I2 = [In In]2

therefore,

‖Ek+1(t)‖ ≤ ‖I2 − D‖‖Ek(t)‖

+
∫ t

0
‖eA(t−s)‖‖AD‖‖Ek(s)‖ds

+
∫ t

0
‖eA(t−s)‖‖P‖‖Ek (s)‖ds

+
∫ t

0
‖eA(t−s)‖‖ψk+1(s)− ψk(s)‖ds (25)

For convenience, we let

D(qk, q̇k) = C(qk, q̇k)q̇k (26)

where
∥∥∥ ∂
∂ q̇ D(qk, q̇k)

∥∥∥ ≤ ξ

By (17) and (26), we have

fk+1(t)− fk(t) ≤ −
(

M−1
k+1 − M−1

k

)
Gk

− M−1
k+1(Gk+1 − Gk)−

(
M−1

k+1 − M−1
k

)
D(qk, q̇k)

− M−1
k+1(D(qk, q̇k+1)− D(qk, q̇k))− (M−1

k+1 − M−1k)d
(27)

According to (26) and (27), properties 1 to 4, lemma 1 and
assumptions 1–2, yields

fk+1(t)− fk(t) ≤ (lmβ
−2
1 (Cm V 2

m + lg + ld)+ β−1
1 gm)

× ‖ek+1(t)− ek(t)‖ + β−1
1 ξ‖ėk+1(t)− ėk(t)‖ (28)

so
fk+1(t)− fk(t) ≤ ω‖Ek+1(t)− Ek(t)‖ (29)

where ω = (lmβ
−2
1 (Cm V 2

m + lg + ld )+ β−1
1 gm)+ β−1

1 ξ

With (25) and (29), we obtain

‖Ek+1(t)‖ ≤ ‖I2 − D‖‖Ek(t)‖ + αη

∫ t

0
‖Ek(s)‖ds

+ αω

∫ t

0
‖Ek+1(s)− Ek(s)‖ds (30)

where sup
t,s∈[0,T ]

∥∥eA(t−s)
∥∥ and η = ‖AD + P‖

Multiply both sides of the (30) by e−λt , by the lemma 2,
we obtain

‖Ek+1(t)‖λ ≤ ‖I2 − D‖ + αη
λ

1 − αω
λ

‖Ek(t)‖λ (31)

As ‖I2 − D‖ ≤ 1, ‖Id − Kd‖ ≤ 1, there is adequate λ,

‖I2 − D‖ + αη
λ

1 − αω
λ

= ρ < 1 (32)

With (31), we obtain

‖Ek+1(t)‖λ ≤ ρ‖Ek(t)‖λ (33)

(32) and (33) yield

lim
k→∞

‖Ek(t)‖λ = 0, t ∈
[

h

ak
, T

]
(34)
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Figure 1 2-DOF manipulator system.

so, we obtain the following expression

lim
k→∞

(qd(t)− qk(t)) = lim
k→∞

(q̇d(t)− q̇k(t)) = 0 (35)

From proof given above, we know that when the number of
iterations k tend to infinity, the tracking error monotonically

tends to zero at t ∈
[

h
ak , T

]
, if t ∈

[
0, h

ak

]
, then

∫ t

0
e−Asϕk(s)ds−1 =

∫ t

0
e−As · eAs

[
2ak

h

(
1 − ak

h
t

)]
ds−1

=
∫ t

0

[
2ak

h

(
1 − ak

h
t

)]
ds − 1

= −
(

ak

h

)2

t2 + 2

(
ak

h

)
t − 1 = −

(
ak

h
t − 1

)2

(36)

Therefore, with the increasing of iteration times, the time
will decrease when the robot arm cannot track the desired
trajectory due to the initial error. When t ∈

[
0, h

ak

]
and the

iteration times k approaches infinity, h
ak will reduce, namely it

can shorten the initial state correction time. In summary, for
the dynamic model of the manipulator system for n degrees
of freedom, we give the following introduction. Firstly, a
correction interval (9) is defined on the time axis, which
decreases as the number of iterations increases. Secondly,
the condition (11) is given without resetting the initial value.
Finally, an iterative learning control law is given according
to equation (8). In terms of the λ norm, the actual output

of the final implementation system can completely track the
expected output.

4. RESEARCH ON SIMULATION
EXPERIMENT AND RESULT
ANALYSIS

In order to verify the effectiveness of the iterative learning
control algorithm proposed in this paper, MATLAB is used
to simulate the trajectory tracking problem of a two-degree-
of-freedom manipulator system. The two-degree-of-freedom
manipulator system is shown in Figure 1.

We set the actual values of the parameters of the simulation
experiment as follows

m1=2K g,m2 = 2K g, l1 = 0.66m, l2 = 0.6m, lc1 = 0.4,
lc2 = 0.4, I1 = 0.1, I2 = 0.1

The desired trajectory is qd1 = 1
2π t − sin(2π t), qd2 =

1
2π t − sin(2π t).

This section simulates the robotic arm system under two
different types of external disturbances.

(1) Sine function

The external disturbance is d1 = 0.2 sin(30kπ t), d2 = 0.2
sin(30kπ t).

We set the parameters for the simulation experiment as
follows: Kd = diag{0.6, 0.6}, K p = diag{5, 5}, a =
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Figure 2 q1 Tracking curve (the external disturbance of ILC is a sine function).

Figure 3 q2 Tracking curve (the external disturbance of ILC is a sine function).

1.003, h = 0.1. The initial state values of system are
randomly generated by the random function. When the
external disturbance is a sinusoidal function, the simulation
results of the mechanical arm system are shown in Figs. 2 to 5.
Simulation experiments were performed on the tracking
trajectory after 40 iterations of the manipulator, as shown in
Figures 2 and 3.

Figure 2 and Figure 3 show the track traces of 1q and 2q at
the 40th iteration, the solid line is the desired trajectory and
the brokenline is the real-time trajectory. It can be seen from

the figures that the system output trajectory curve after the
40th iteration can completely track the desired trajectory. The
learning law given in this paper has good control performance
for the mechanical arm system with the external disturbance
of the sinusoidal function.

Under the same conditions, the simulation experiments
were carried out on the robotic arm system with acceleration
suppression random initial state error and the mechanical arm
system without acceleration suppression random initial state
error.
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Figure 4 The tracking error cure with iterative numbers (the external disturbance of ILC is a sinusoidal function).

Figure 5 The tracking error cure with iterative numbers without acceleration-suppressing random errors (the external disturbance of ILC is a sinusoidal function).

In Figure 4, the curve withthe asterisk is the first link
tracking error (e1) curve, and the circled curve is the
second link tracking error (e2) curve. It can be seen from
the figure that the tracking error is small enough after 15
iterations, which indicates that the tracking error of the
robot arm system is convergent. Figure 5 shows the ILC
algorithm based on the non-acceleration-suppressed random
initial state error. The tracking error of the manipulator system
varies with the number of iterations. Comparing Figure 4

and Figure 5, it can be seen that under the acceleration
suppression random initial error algorithm proposed in this
paper, the tracking error can be reduced to zero around the
15th iteration. Under the ILC algorithm without acceleration
suppression of random initial error, the tracking error is
reduced to zero around the 25th iteration. Therefore, the
iterative learning algorithm proposed in this paper has an
obvious effect on accelerating the suppression of random
errors.
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Figure 6 q1 tracking curve (the external interference of ILC is a random function).

Figure 7 q2 tracking curve (the external interference of ILC is a random function).

(2) Random function
The external disturbance is d1=random(1)sin(100kπ t ,

d2 = random(1)sin(100kπ t).
We set the parameters of simulation experiment as follows:

Kd = diag{0.4, 0.4}, K p = diag{6, 6}, a=1.003, h=0.1.
The initial state values of the system are randomly generated
by the random function.

We control the trajectory tracking of each link of the
manipulator. The simulation results of the manipulator system

when the external disturbance is a random function,are shown
in Figures 6 to 9.

Figure 6 and Figure 7 show q1 and q2 track the trajectory
curve at the 40th iteration; the solid line is the desired
trajectory and the broken line is the real-time trajectory.
As can be seen from the figure, the output trajectory can
completely track the desired trajectory after the 40th iteration.
The trajectory tracking control target has been implemented,
illustrating that the ILC proposed in this paper is effective.
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Figure 8 The tracking error cure with iterative numbers (the external disturbance of ILC is a random function).

Figure 9 The tracking error cure with iterative numbers without acceleration-suppressing random errors(the external disturbance of ILC is a random function).

Under the same conditions, the simulation experiments
were carried out on the robotic arm system with acceleration
suppression random initial state error and the mechanical arm
system without acceleration suppression random initial state
error, as shown in Figure 8 and Figure 9.

Figure 8 shows the curve of the tracking error of the robot
arm system with the number of iterations. The curve with
the asterisk is the change of the first link tracking error
(e1), and the curve with the circle is the tracking error of

the second link (e2). It can be seen from the figure that
when the external disturbance is in the form of a random
function, the tracking error has an initial oscillation, and after
the 10th iteration, it starts to decrease with the number of
iterations. After 13 iterations, the tracking error is small
enough. It indicates the convergence of the tracking error
of the robot arm system. Figure 9 shows the ILC algorithm
based on the non-acceleration-suppressed random initial state.
The tracking error of the two-degree-of-freedom manipulator
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system varies with the number of iterations. As can be seen
from Figure 8 and Figure 9, with the application of the
acceleration suppression algorithm proposed in this paper, the
tracking error can be reduced to zero around the 13th iteration.
In the ILC algorithm without acceleration suppression, the
tracking error is reduced to zero around the 19th iteration.
Therefore, the proposed algorithm has an obvious effect on
accelerating the suppression of random errors.

5. CONCLUSIONS

In this paper, the manipulator system with external distur-
bances is studied without resetting. Based on the PD-type
iterative learning control algorithm, an iterative learning con-
trol method for accelerating the suppression of random initial
errors is proposed. Firstly, a correction interval is defined on
the time axis, which decreases as the number of iterations
increases. Thereby, the algorithm eliminated the influence
of the random initial state error on the robot arm. At the
same time, the iterative learning control algorithm proposed
in this paper obtains he initial value at each iteration without
resetting. Secondly, under the λ-norm, the convergence of the
algorithm is proved. Finally, when the external disturbance
is a sinusoidal function and a random function, the proposed
algorithm is compared with the iterative learning control under
the condition of no acceleration suppression random error. The
numerical simulation results show that the iterative learning
control algorithm proposed in this paper can effectively
accelerate and suppress random initial state errors. Therefore,
the algorithm is effective.
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