
Eng Int Syst (2018) 1: 21–25
© 2018 CRL Publishing Ltd Engineering

Intelligent Systems

Using UML 2.1 to model
Multi-Agent Systems

Darshan S. Dillon, Tharam S. Dillon, and Elizabeth Chang

Digital Ecosystems and Business Intelligence Institute, Curtin University of Technology Perth, Australia
E-mail: (Darshan.Dillon, Tharam.Dillon, Elizabeth.Chang)@cbs.curtin.edu.au

The use of UML 2.1 to model a broad range of systems is evident from the variety of UML diagrams in academia and in the marketplace.
One class of systems currently gaining popularity are Multi -Agent Systems. There are efforts underway to use UML to model these
systems and these efforts are both productive and form the basis for both a methodology and a notation for systems of this type.

1. INTRODUCTION, AGENTS AND
THEIR CHARACTERISTICS

In this paper we first introduce what an Agent is, the key
characteristics of an Agent, the scope of this paper in terms
of what we model in Multi-Agent Systems, and finally future
directions.

In order to define what an agent is we should first consider
a definition from the literature.

An agent is a computer system that is situated in some en-
vironment, and that is capable of autonomous action in this
environment in order to meet its design objectives.1

From this definition a number of points are clear. Firstly,
the location of the computer program is important. This is
so because the program can migrate from one machine to an-
other. This is not the usual pattern of behaviour for computer
programs. They usually are installed, configured and run on
a particular machine. They do not travel, as such. Secondly,
the computer program is capable of acting automously, which
means it is not dependant on any other program. This goes
together with the fact that agents are mobile. They can be
launched by a user on a particular machine, and travel, sever-
ing their connection with the user and concentrating their state
related information within themselves. Thirdly, the computer
program is goal-driven and can choose to act in a way that

satisfies agents design objectives. Most computer programs
are data-driven, reacting to inputs.

Finally, agents play an important role in embedded and
ubiqitious computer systems. They are particularly important
in goal-oriented or mission-oriented environments. The mod-
eling and design of agents is an important first step for the
building of agent-based systems.

There are six key characteristics of an agent2 They are as
follows.

1. Autonomous - That is, an agent can perform indepen-
dently from other agents by making decisions based on
the internal state of itself and information from the envi-
ronment.

2. Sociable - That is, an agent can co-operate and collab-
orate with other agents by using a common language to
communicate with each other.

3. Service Discovery - Agents are able to identify desired
services.

4. Reactive - That is, an agent is pro-active. It can perform
tasks that may be beneficial to the user even though it has
not been explicitly asked to perform those tasks.

5. Mobility - Agents can move across networks from any
location. They can be assigned a task and sent over the

vol 26 no 1 March 2018 21



USING UML 2.1 TO MODEL MULTI-AGENT SYSTEMS

web after which their connection to the user can be sev-
ered. Their state can be centralized within themselves.

6. Goal-Driven Execution - Each Agent has a goal that is it
constantly trying to meet.

2. SCOPE

As with any paper, we need to define the scope we will work
within. In the case of this paper, we will seek to model how
the sociable and goal-driven nature of agents can be expressed
using UML 2.1.

3. AGENT CHARACTERISTICS MOD-
ELED

3.1 ModeUing Sociable Characteristics of
Agents

In modeling Agents, one of their key characteristics is that they
are sociable. This means that they are able to interact with
each other in order to co-operate, collaborate and negotiate
with respect to information, knowledge and services. Very
often each agent will have only part of the full picture needed
to solve the problem at hand. The ability to subdivide the
tasks in order to reduce the complexity of the problem, have
individual agents work only on their aspect of the problem,and
then combine sub-solutions into a final solution is extremely
helpful and productive.

In AgentUML, previous researchers have been modeling
Agent protoco ls56 using a non-standard version of sequence
diagrams where each rectangle represents an agent playing
a different role. We say non-standard because the rectan-
gles at the head of lifelines are meant to represent classes,
not agents. Having multiple rectangles each representing the
same Agent is also non-standard, where each rectangle repre-
sents the Agent playing a particular role.

3.2 Modelling roles of Agents

Each agent is defined by specifying a specific set of roles
that it plays. Each role could be associated with a distinct
interface. These interfaces could be specified by a technique
called method lifting outlined below. Method lifting defines
a composite class. What are composite classes? If we first
consider a hierarchy of component classes, each of which
has an interface. If we relate these component classes to a
composite class that also has an interface, and which is formed
by taking a selection of methods from the interfaces of the
component classes. This process of relating the interface of
component classes to the interface of a composite class is
known as method lifting. In the example below, the methods
A, B & C are individually chosen from different component
classes and combined in the composite class at the head of the
hierarchy. This is shown below.

Secondly, a particular class may have more than one life-
line. For example, a particular class may have many ports,
each port with a lifeline. This is invaluable in the case of

modeling Agents since we need the facility to be able lo rep-
resent an Agent in a sequence diagram, where it plays more
than one role concurrently. You can see figure 2 for an ex-
ample of this. The agent may be represented by a rectangle,
and have many ports, each port with a lifeline. In the case of
the method lifting paradiagm above the composite class may
have many interfaces, each of which chooses a selection of
methods from a hierarchy of component classes used as the
source for method lifting. A sequence diagram where com-
posite classes that have more than one port is shown below in
figure 2.

3.3 Modelling Communication between
Agents

Generally, communication between objects is done in UML in
a sequence diagram, or a communication diagram (used to be
called a collaboration diagram in UML l.x). They are seman-
tically similar although a sequence diagram can generally be
made to contain additional information. A sequence diagram
is generally defined across the page by a series of rectangles,
each of which represents a class. Each of these rectangles has
a dotted line running vertically down the page. These dotted
lines are known as lifelines. As you go down the page, time
passes as messages flow between objects.

A sequence diagram where composite classes have more
than one port is shown below in figure 2.

In terms of previous work done using ports to represent an
Agent/Class playing different roles Hanish & Dillon8 have
previously used a similar and related approach.

We now proceed to an illustrative example involving a set
of Agents, one of which (Agreement Agent) plays two roles
concurrently represented by Pl and P2. Depending on which
role the agent is acting in when it sends/receives messages
will the sequence diagram show arrows to/from a particular
lifeline for the agent. The corresponding sequence diagram of
a rental car being returned to a depot (for a car rental system)
and payment being transacted by the customer is shown below.

If we follow the sequence across and down the page, we
note a number of points. Firstly, Pl (or port 1) represents the:
Agreement agent in ia role to establish status. P2 represents
the: Agreement agent in a role to perform transactions. Note
that each port has a lifeline. If there are two ports, this signifies
two roles that are played by the agent from which the ports
come. Initially, the request is made to return a car. Secondly,
the Agreement agent checks that the car is fine, and receives
a message back that this is so. The same agent then performs
a transaction to request the money owing on the car and the
customer agent pays the money. Note that the Agreement
agent plays two different roles here. Firstly, the role to check
the status of the car, and secondly to perform the transaction.
Then, the Agreement agent sets the status of the car to “free”,
and receives a message back from the Vehicle agent that the
car status is “free”. Again, the Agreement agent is acting in
its role to compute status of the car. The Agreement agent
makes a request to the Customer agent to set it to free. The
Customer agent sets the status to free and returns the message
to the Agreement agent that the Customer is free. Finally, the
Agreement agent sends a message to the Manager agent that

22 Engineering Intelligent Systems



D. S. DILLON ET AL.

Figure 1 An example of Method Lifting 3.

Figure 2 Sequence diagram giving an example of a composite class with ports.

the car is returned, and the Manager agent sends a message
that the car is returned to the Employee.

All the interaction between different Agents is shown on
this sequence diagram. Importantly, an agent (Agreement)
is shown playing two different roles on the same sequence
diagram (Status and Transaction) in the same timeframe.

4. MODELLING GOAL-DRIVEN NA-
TURE OF AGENTS

Being goal driven is a feature of many different agents. In or-
der to consider what this means we can reexamine the concept
of search space. Forward-chaining begins with data which
drives the reasoning toward goals. Backward-chaining goes
backwards decomposing goals into subgoals and then check-
ing to see if any of them is true. If so, the ultimate goal is
considered to be true. If not, then the process of decomposi-
tion is continued.

Most traditional software is not goal driven as such, but is
a black box. That is, specific combinations of inputs lead to

specific outputs. The fact that an agent has an overriding goal,
regardless of the specifics of processing, endows it with many
other features. Specifically, it will be pro-active. i.e. even if
there are no events generated by human users that trigger the
agent, it will take actions alone to try and meet its goals . It will
also be intelligent in trying to make use of the enviroment. For
example, if the goal of the agent is to find certain data, it may
migrate to another site once it has exhausted all possibilities
at the current site. The decision to migrate may come from
within the agent, rather than being triggered by an external
event.

In this case, we use the composite structure diagram, and
extend it by using a stereotype in order to define the constructs
necessary to define the goal-driven aspect of an Agent.

The basic definition for a composite structure diagram in
UML 2.I is as follows.4

“A composite structure diagram is a diagram that shows
the internal structure of a classifier, including its interaction
points to other parts of the system. It shows the configuration
and relationship of parts, that together, perform the behavior

vol 26 no 1 March 2018 23



USING UML 2.1 TO MODEL MULTI-AGENT SYSTEMS

Figure 3 Sequence diagram illustrating sociability of agents.

Figure 4 Definition of �Agent� stereotype.

of the containing classifier.
Class elements have been described in great detail in the

section on class diagrams. This section describes the way
classes can be displayed as composite elements exposing in-
terfaces and containing ports and parts.”

Below (in figure 4) is contained the definition of the
�Agent� stereotype based on the composite structure di-
agram. From the definition it must have a name, at least a
Manager part which controls the efforts of the Agent to achieve
a goal, and at least one port, which relates to playing a role.

Having seen the definition of an �Agent� stereotype we
can proceed to an example to realize its usage. In the case of
the Agreement agent in the Car Rental system, we can model

Figure 5 Composite structure diagram representing goal driven characteristic
of agents.

the goal driven aspect of the agent by a Composite Structure
Diagram with Parts, and Ports. Each part represents a distinct
area of processing within the agent. Each port represents a
different role played by the agent. The diagram encapsulating
this information is shown in figure 5.

Note that the same two ports that were present in the se-
quence diagram are also present here. Each of the ports is a
construct which enables the Agent to interact with the envi-
ronment and with other Agents. For example, if the goal of
the Agent is to close out processing with respect to a specific
Rental Agreement, then the Agent will have to consult the
Goal Driven part of the Agent to decide to check the car and
the customer processing part of the Agent to finalize return
and payment, and the goal driven part itself to see that the

24 Engineering Intelligent Systems



D. S. DILLON ET AL.

necessary checklist of items have been finalized for the return
of the car.

5. CONCLUSION

This paper has examined the use of UML 2.1 to model Multi-
Agent Systems. In particular, we have examined and illus-
trated the Agent characteristics of being Sociable and also
Goal-Driven. Specifically, in order to illustrate the fact that
Agents are sociable we used a sequence diagram with ports. In
order to illustrate the fact that Agents are goal-driven we used
a composite structure diagram where the Agent is modeled
with ports, which is new in UML 2. The use of ports is cen-
tral where each port represents the Agent playing a different
role.

Future work may include the modeling of Agents to illus-
trate other characteristics of an Agent discussed in section 1.

Acknowledgement

The authors would like to acknowledge the invaluable assis-
tance and suggestions of Maja Hadzic as we authored this
paper.

REFERENCES

1. I. Wooldridge, M., “An Introduction to MultiAgent Systems”,
John Wiley & Sons , 2002.

2. Hadzic, M., “Ontology-based Multi-agent Systems for Hu-
man Disease Knowledge Sharing”, DEBJI, Curtin University
of Technology, July 2006

3. Gardner, W, “Human Computer Interaction for Web Applica-
tion”, DEBH, Curtin University of Technology, August 2006.

4. Pilone, D, “UML 2.0 in a Nutshell”, O’Reilly 2005.
5. Bauer, MULLER & ODELL, “Agent UML: A Formalism for

Specifying Multiagent Interaction”, Agent-Oriented Software
Engineering, Paolo Ciancarini and Michael Wooldridge eds.,
Springer-Verlag, Berlin, pp. 91-103, 2001. (Held at the 22nd
International Conference on Software Engineering (ISCE)).

6. Huhns, “Agent UML Notation for Multiagent System Design”,
Internet Computing, lEEE Volume 8, Issue 4, July-Aug. 2004
Page(s): 63-7l.

7. OMG Group, “OMG UML 2.1.2 Superst ructure”, 02/11/2007.
8. Hanish, A. A. & Dillon, T. S. (1997) Object-oriented behaviour

modelling for real-time design. IEEE Computer Society 3rd
l11ternatio11a/Workshop 011 Object-Oriented Real-Time De-
pendable Systems (WORDS ’97). Newport Beach, California.

vol 26 no 1 March 2018 25




