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This paper concerns the problem of fault diagnosis in wind turbines. Motived by SupportVector Machines (SVM) method and Fuzzy
Logic algorithm, a novel procedure is derived to provide for the wind turbine diagnosis. Since, the conventional SVM classifier with
fixed parameters cannot bring performance of high accuracy and fast reflex. In this work, the proposed FDI strategy has raised the
problem of congeal the parameters of classifiers after learning, this novel strategy based on the evaluating of error of classification to
adjust the parameters of classifier w and b in real time using the fuzzy logic. This principal allow for achieve a new classifier online,
which is able to process the new data comes from measuring sensors. The Different parts of the process were investigated, including
actuators, sensors and process faults. With duplicated sensors, have detected sensor faults in blade pitch positions, generator and
rotor speeds rapidly, but under specific constraints on the fault. all Process faults mainly concerned friction in the wind turbine, which
might cause it damage. The fault could be detected under constraints of high magnitude error. the comparing Our results with the
conventional SVM classifier indicate the value of our method
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1. INTRODUCTION

Energy is the subject of much global debate today. The aim
of the countries is to satisfy the ever increasing demand for
energy while respecting the environment and the safety of
people. Diversifying energy sources is essential because of
the beginning of depletion of natural energy resources such
as oil and gas, in order to avoid energy dependence for non-
hydrocarbon producing countries, and also to preserve nature
[1]. Thus, the focuswas on renewable energies (see fig. 1 and
fig. 2).

In recent years, solar energy [2] and the energy produced by
wind turbines [3] are part of these trendy energies. Mastering
these new energy application progress not only technological
but also scientists (See fig. 2).

Figure 1 Estimated Renewable Energy Share of Total final EnergyConsump-
tion, 2016 [25].
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Figure 2 Global New Investment in Renewable Energy by Technology, De-
veloped and Developing Countries, 2016.

The wind turbine is a renewable energy system that har-
nesses the wind resource and transforms it into electrical en-
ergy. Wind energy is booming today. Several wind farm fa-
cilities are offshore. This trend will be confirmed even more
in the future to avoid disturbing the citizens in terms of land-
scape and noise, and also to have a strong wind, frequent and
fairly regular.

These floating offshore installations [4] require a thorough
study of the wind, aerodynamics, sea currents, hydrodynam-
ics, elasticity, control of the wind turbine, as well as the plat-
form to determine their feasibility. technical and economic.
This also requires increasing the availability and reliability of
the wind turbine, reducing downtime and maintenance visits
that are more difficult and costly compared to the wind tur-
bine’s installations on the ground. One way to meet these
requirements is to design a fairly efficient fault monitoring
and diagnostic system [5]. Monitoring and fault diagnosis of
wind turbines can predict and quickly detect any occurrence
of a failure before it spreads and lead to the shutdown or even
destruction of the wind turbine.

To avoid these problems the researchers offered several of
faults detection systems. However, several difficulties and
challenges are encountered by the designer of the FDI sys-
tem as the complex structure and the non-linearity, instability
and complexity of the aerodynamics and the wind has a ran-
dom nature and switching in the control of the wind turbine,
which still limits the application of model-based approaches
[6-7]. As a matter of fact, Parallel to the research of fault de-
tection techniques based-model, the data-driven methods [8-
10] are currently receiving considerable. Since, data-driven
methods belong on the datameasured process, such as via ex-
ploiting hardware redundancy and based of a bank of robust
data-driven detection filters [11], scheme with robust residual
generators directly constructed from available process data
[12], a Pattern Recognition (PR) approach for fault diagnosis
of a wind turbine [13], or based a condition monitoring using
Adaptive Neuro-Fuzzy Interference Systems (ANfiS) [14].

In machine learning, support vector machines are super-
vised learning modelswith associated learning algorithms that
analyze data used for classification and regression analysis
[15]. The SVM method was used only for fault diagnosis
in the most cases used to classified the input/output signal
[16-18], or by combining with some methods to improve the
SVM, as artificial neural networks (ANNs) augmented by ge-
netic algorithms to detect faults in rotating machinery for a
number of years, the using statistical methods to preprocess

the vibration signals as input features in [19], or fault diag-
nosis of low speed bearing using multi-class relevance vector
machine (RVM) and SVM in [20], or using the algorithm
genetic to select appropriate free parameters of SVM [21],
or using wavelet analysis to optimizing signal decomposition
levels in [22]. The other choice in [23] is the optimization of
SVM parameters based on the Colony Algorithm. Therefore,
these preceded results in this field of study is not enough for
achieving the best performances of FDI strategy. This led us
to develop a new strategy which is as follows.

This work focuses to achieve a new FDI strategy for wind
turbine based on the SVM technic ameliorated by the fuzzy
logic. The idea is to design an adaptive classifier to raise
the problem of congeal the parameters of SVM classifier. the
FDI strategy proposed based on the evaluation of classification
output to adjust the parameters of classifier w and b in the real
time using the fuzzy logic. the different parts of the process
were investigated, including actuators, sensors and process
faults. With duplicated sensors, have detected sensor faults
in blade pitch positions, generator and rotor speeds rapidly,
but under specific constraints on the fault. all Process faults
mainly concerned friction in the wind turbine, which might
cause it damage. The fault could be detected under constraints
of high magnitude error. the comparingOur resultswith SVM
classifier [18] indicate the value of our method. To validate
our results we have a benchmark model of wind turbine [24]
used simulations with Matlab & Simulink.

The remainder of the paper is organized as follows: in sec-
tion 2, the wind turbine system modeling. The Faults diag-
nosis architecture is presented in section 3. In section 4, the
proposed strategy is presented. Some important simulation
results are represented in section 5 to show the effectiveness
of our approach. finally, in section 6 a concluding remark and
perspective is given.

2. WIND TURBINE

A wind turbine captures the wind kinematic energy and trans-
forms it into mechanical energy (rotating shaft) first and then
into electrical energy (generator). The main components of
the horizontal-axis wind turbines (HAWT) that are visible
from the ground are the tower, nacelle, and rotor, as shown in
figure 3.

Figure 3 Wind turbine components.

At first, the wind encounters the rotor on this upwind
horizontal-axis turbine and rotates it. The low-speed shaft
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transfers energy to the gearbox, which steps up in speed and
spins the high-speed shaft, which increases the speed and ro-
tates the high-speed shaft. The high-speed shaft causes the
generator to spin, producing electricity. In the figure, it is
shown that the yaw-actuation mechanism, which is used to
turn the nacelle so that the rotor faces into the wind [26].

In this work, the wind turbinemodelwill be used is a three-
bladed pitch-controlled variable speed wind turbine with a
nominal power of 4.8MW that is the one described in [24].
The description of the model is presented in the following.

2.1 Aerodynamic model

The aerodynamics of the wind turbine is modeled as a torque
acting on the blades, according to:

τr =
3∑

i=1

ρπ R3Cq(λ(t), βi (t)) × vω,i (t)2

6
(1)

where vw is the wind speed, ρ = 1.225 kg/m3 is the air den-
sity, R = 57.5 m is the rotor radius, βi is pitch position, and
λ is the Tip Speed Ratio, defined as:

λ = ωr R

vw

(2)

2.2 Pitch system model

For each blade, the hydraulic pitch system is modeled as a
closed-loop transfer function between the pitch angle βi and
its reference βi,re f , according to:

βi (s)

βi,re f (s)
= w2

n

s2 + 2 · ξ · wn · s + w2
n

(3)

where ξ = 0.6 is the damping factor, and wn = 11.11 rad/s
is the natural frequency, and i = 1, 2, 3 for three blades.

2.3 Drive train model

The drive train is modeled by a two-mass model:
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where the generator and rotor torque are τg(t) and τr (t) re-
spectively, the angular velocity of the generator and the rotor
are ωg(t) (rad/s) and ωr (t) (rad/s) (respectively), Jr = 55·106

kg·m2 is the moment of inertia of the low-speed shaft, Kdt =
2.7 · 109 Nm/rad is the torsion stiffness of the drive train,
Bdt = 775.49 Nm·s/rad is the torsion damping coefficient of
the drive train and Br = 7.11 Nm·s/rad, Bg = 45.6 Nm·s/rad
is the viscous friction of the high-speed shaft, Ng = 95 is the

gear ratio, Jg = 390kg·m2 is the moment of the inertia of
the high-speed shaft, ηdt = 0.97 is the efficiency of the drive
train, and �
(t) is the torsion angle of the drive train.

2.4 Generator and Converter model

The generator and converter dynamics can be modeled by a
first transfer function:

τg(s)

τg,re f (s)
= αgc

s + αgc
(5)

The power produced by the generator is given by:

Pg(t) = ηg · ωg(t) · τg(t) (6)

where αgc = 50 rad/s is the generator and converter model pa-
rameter, ηg = 0.98 is the efficiency of the generator. Besides
the generator torque τg is controlled by the reference τg,re f .

2.5 PI control of wind turbine description

Figure 4 shows the different operating ranges of the wind
turbine [24].

Figure 4 Illustration of the reference power curve for the wind turbine de-
pending on the wind speed.

The controller has two modes. Mode 1 corresponds to the
wind region 2 ([3.5,14]) and mode 2 corresponds to the wind
region 3 ([14,25]). Consider ourwind data in figure 5, atmore
or less time 2400s, thewind speed goes from region 2 to region
3. Hence, we can assume that from time 0 to 2400s, the PI
controller is in mode 1, and after that it goes to mode 2 [24].

The control general objective is tomaximize power absorp-
tion while operating in region 2 and to minimize structural
loads during operation in the region 3.

2.6 Faults scenarios

The following faults are considered in [27] of the wind turbine
benchmark model:

The faults in the pitch systems: Sensor faults in the
pitch position measurements are either electrical or mechani-
cal faults in the position sensors. Fault1 is a fixed value sensor
fault on pitch 1 position sensor 1 (β1,m1); Fault 2 is a scaling
error sensor fault on pitch 2 position sensor 2 (β2,m2); Fault
3 is a fixed value sensor fault on pitch 3 position sensor 3
(β3,m3). In addition, two actuator faults in the pitch systems
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Figure 5 Wind speed sequence vw(t) used in the proposed benchmarkmodel.

are defined: Fault 6 associated with pitch actuator 2 caused
by high air content in oil, and Fault 7 is associated with pitch
actuator 3 caused by dropped main line pressure (see Table
4).

The faults in the drive train system: Fault 4 is a fixed
value sensor fault on rotor speed sensor 1 (�r,m1), and Fault
5 is a scaling error sensor affecting both rotor speed sensor 2
and generator speed sensor 2 (�r,m2,�g,m2) (see Table 4).

The faults in the generator and converter system: Fault 8 is a
converter fault, representing an offset in the internal converter
control loops (see Table 4).

3. FAULT DIAGNOSIS ARCHITECTURE

In this paper, a fault diagnosis method by Fuzzy-SVMis pro-
posed. SVM classification is used to evaluate the generated
residuals as well as other features, moreover the fuzzy logic
algorithm is used to adjust the SVM classifier parameters in
order to conclude on the operating state of the system. It is
essential to understand the wind system and how it works be-
fore considering a fault diagnosis scheme (figure 6). The idea
behind this fault diagnosis scheme for wind turbines is to see
the diagnostic problem as a classification problem.

Figure 6 Fault Diagnostic Scheme for Wind Turbines Systems.

The SVM method has been used for fault diagnosis in the
majority of cases by the direct use of input / output signals[16-
17-18]. Or by adding a pretreatment phase before applying
SVMs: wavelet analysis to optimizing signal decomposition
levels in [22], artificial neural networks (ANNs) augmented
by genetic algorithms in [19]. The second choice appears the
most appropriate because the first scheme may confuse the
work of the SVM algorithm that will seek the solution in all
directions. In the literature, researchers have tried to combine
SVMswith other techniques: ColonyAlgorithmto optimizing
the SVMparameters [23],multi-class relevant vectormachine
(RVM) [20]. Although this combination somewhat improves

the SVM results applied to the raw data, false alerts still re-
main. This can be understood because Principal Component
Analysis (PCA) tries to compress the raw data to a smaller di-
mension by capturing the maximum variance of the raw data
without looking at the symptoms of the defects.

In thiswork, we have proposed the defect detection process
in a more general way than that of residue generation by an
adaptive classifier. It’s about creating features specific to each
defect. Among these characteristics is the residue. One can
have relevant informative measures of default, combination
of measures and filtered measures.

The construction of the characteristics in this work applied
to the case of the wind turbines is carried out in a manual way
based on the knowledge of the wind system. Subsequently,
SVM is used as a first step to evaluate the characteristics of a
given defect, and then based on the SVM classifier output as
a second step: the presence of the output in an interval shows
the state of the system if not by adjusting the parameters of
the SVM classifier by the fuzzy logic algorithm according to
the rules in Table 1 for the output and Table 2 for the output
dynamics to classify this output as shown in figure 7.

Figure 7 Proposed Fault Diagnostic Fuzzy-SVM Strategy Scheme.

The proposed Fuzzy-SVMfaults diagnosis is developed in
three parts. firstly, a set of data with and without defects is
used to learn the detection patterns of each defect by using
a given wind sequence as input. in secondly, the obtained
models are validated on a new fault scenario, finally, if the
classification output is not validated by the evaluation step,
the parameters are adjusted using the fuzzy logic.

4. THE PROPOSED STRATEGY

4.1 SVM classification

SVMs are a robust machine learning methodology [28] which
has been shown to yield state-of-the-art performance on the
classification by finding a hyper plane that separates two
classes of data in data space while maximizing the margin
between them.

Consider N training vectors xi ∈ R p characterized by a
set of p descriptive variables xi = {xi1, xi2, . . . , xip} and
by the class label yi ∈ {−1,+1}. For nonlinearly separa-
ble data x , the data can be mapped by some nonlinear func-
tion θ(x) into a high-dimensional feature space where linear
classification becomes possible. Rather than fitting, nonlin-
ear curves to the data, SVM handles this by using a kernel
function K (xi , x) =≺ ϕ(xi ), ϕ(x) � to map the data into
a different space where a hyper plane can be used to do the
separation.

The optimization problem is solved using the Lagrange
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function. The obtained decision function is then:

f (x) = sign

(
N∑

i=1

αi yi K (xi , x) + b

)
(7)

With the properties:

w =
N∑

i=1

αi yiϕ(xi ) (8)

SVMs find the hypothesis w and b, which defines the sep-
arating hyper plane, by minimizing the following objective
function over all n training examples:

τ (w, e) = 1

2
|w|2 + C

N∑
i=1

ei (9)

Under the constraints that:

∀i = {1, . . . , n} yi (K (x)i, x) + b) ≥ 1 − ei ; ei ≥ 0

In this objective function, each slack variable ei shows the
amount of error that the classifier makes on a given example
xi . Minimizing the sum of the slack variables correspond
to minimizing the loss function of the training data, while
minimizing the term corresponds to maximizing the margin
between the two classes.

Radial Basis Function (or Gaussian kernel) with the vari-
ance σ was used in this work is follow:

K (xi , x) = exp

(
−|xi − x |

2σ 2

)
(10)

The key idea of learning amodel for fault detection by SVM
is the definition of the vector x to be used for classification.
This vector should include the most relevant information on
the behavior of the system at a given fault. This vector can
contain the measured outputs, staggered steps, driveways, in-
structions, a combination thereof or variations in output over
time. To build a useful vector, we must carefully observe the
results of the process outputs for each anomaly and propose a
combination that ensures high fault impact considered in the
vector x . In this work, we have proposed the same vectors
and the same parameters of the filters in [18].

Remark 1: Several vectors are available for different types
of defects. Hardware redundancy (duplicate sensors) is used
as a feature in most of these vectors. The kernel used for the
learning of all faults is theGaussian kernel that is most adapted
to noisy actual and disrupted thanks to its great capacity for
learning. Most data is filtered by a first order filter with a
time constant τ to reduce sensitivity to process disturbances
or measurement noise.

4.2 The adaptive Fuzzy-SVM classifier

The disadvantages of the SVM classifier with a fixed parame-
ters open avenue for fuzzy logic utilization in the FDI of wind
turbines [18]. Through observing the SVM classifier output
and it dynamic to adjusting the kernel parameters of SVM w

and b [23]. Therefore, this paper adjusts w and b based on
the fuzzy logic. The initial kernel parameters are got from

the initial learning by just six samples, then using 
w and

b respectively, in order to adjust w and b according to the
following equation:

{
w = w′ + 
w

b = b′ + 
b
(11)

This work led us to develop a new strategy to adjustment of
the SVM classifier parameters based on the fuzzy logic algo-
rithm, to lift these disadvantages of this classifier presented in
[18]. The fuzzy logic algorithm acquire SVM classifier output
and it dynamic, as input and 
w and 
b as output. In accor-
dance with the SVM classifier output value, whether it is us or
minus, and it dynamic the fuzzy logic acquire a correspond-
ing decision to adjusting w and b by 
w and 
b respectively.
Then, add 
w and 
b to the current kernel parameters, and
the parameters after modification are obtained. The structure
of the adaptive fuzzy-SVM classifier shown in Figure 7.

Algorithm 1: The evaluation Task.

begin
Read the data ‘y’ come from SVM classifier to decide the

fault index ‘s’:
If y < m

s = 0;
Else if y > M

s = 1;
Else
Go to adjusting the classifier parameters (w and b) accord-

ing to the equation (11);
End

In this work, the data are assessed in the evaluation task
according to the following algorithm 1.

Where m and M in each faults are summarized in the fol-
lowing table:

Table 1 Values of m and M

Faults Parameters Values
Fault 1 m=0

M=0.05
Fault 2 m=0

M=0.05
Fault 3 m=0

M=0.05
Fault 4 m=0

M=0.05
Fault 5a m=0

M=0.05
Fault 5b m=0

M=0.05
Fault 6 m=0.5

M=1
Fault 7 m=0.5

M=1
Fault 8 m=0.6

M=0.8

According to rules of adjusting kernel parameters:
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“IF Ai and Bi , then Ci ”

The fuzzy control rules are expressed in Table 2 and Table 3.
The linguistic terms of output y is negative big (NB), neg-

ative small (NS), zero (ZO), positive small (PS), and positive
big (PB). The linguistic terms of yc is negative big (NB), neg-
ative small (NS), zero (ZO), positive small (PS), and positive
big (PB). The linguistic terms of 
w and 
b are zero (ZO),
small (S), and big (B). Subjection functions for input and out-
put variables of the controller take the form of trigonometric
functions.

Table 2 Fuzzy control rules of 
w.


w y
NB NS ZO PS PB

NB L M S M L
NS L S ZO S L

yc ZO L S ZO S L
PS L S ZO S L
PB L M S M L

Table 3 Fuzzy control rules of 
b.


b y
NB NS ZO PS PB

NB L L L L ZO
NS L M L M ZO

yc ZO ZO L M L MO
PS ZO M L M ZO
PB ZO L L L ZO

5. THE VALIDATION RESULTS

In this work the wind turbine controller regions as presented
in section 2. Region 1 is denoted power optimization, and
Region 2 is denoted power reference following . The con-
troller is implemented with a sampling frequency at 100 hz.
The controller starts in mode 1. Figure.5 and Figure.8 shows
respectively the evolution of the speed of the wind (input) and
power electrical generated (output) in terms of time. Clearly,
appears that there is a strong connection between these two
variables. So, the power is maximum if speed wind exceeds
a certain value. The all simulations are taken during 4400 s.

Figure 8 Generated power output Pg .

Since the wind turbine system used in this run is composed
of three pitch actuator system, the generator system and the
Drive Train system, using this proposed FDI we have got and
discuss each fault alone in the following:

Fault 1: fixing value sensor fault on pitch 1 position sensor
1 β1,m1. The Figure.9. shows the results of the detection
and isolation of the fixing value sensor fault (Fault1) and the
sensor signal β1,m1.

Figure 9 The FDI of the pitch position β1,m1.

Fault 2: scaling error sensor fault on pitch2 position sensor
2 β2,m2. The figure.10. shows the results of the detection
and isolation of the scaling error sensor fault (Fault2) and the
sensor signal β2,m2.

Figure 10 The FDI of the pitch position β2,m2.

Fault 3: fixing value sensor fault on pitch 3 position sensor
3 β3,m1. The Figure.10 shows the results of the detection and
isolation of the fixing value sensor fault (Fault3) and the sensor
signal β3,m1.

Figure 11 The FDI of the pitch position β3,m1.

Fault 4: Fault 4 is a fixed value sensor fault on rotor speed
sensor 1 ωr,m1. The Figure 12. shows the results of the de-
tection and isolation of the fixing value sensor fault (Fault 4)
and the sensor signal ωr,m1.

Fault 5: Fault 5 is a scaling error sensor affecting both rotor
speed sensor 2 and generator speed sensor2 (ωr,m2, ωg,m2).

40 Engineering Intelligent Systems



Y. FADILI AND I. BOUMHIDI

Figure 12 The FDI of the rotor speed ωr,m1.

Figure 13 The FDI of the rotor speed ωr,m2.

Figure 14 The FDI of the generator speed ωg,m2.

Figure 15 The FDI of the pitch position β2.

The Figure 13 and Figure 14. shows the results of the detection
and isolation of the scaling error sensor (Fault 5) and the each
sensor signal.

Fault 6: associated with pitch actuator 2 caused by high air
content in oil. The Figure 15 shows the results of the detection
and isolation of the changing pitch actuator 2 parameters fault
(Fault 6).

Fault 7: Fault 7 is associated with pitch actuator 3 caused by
dropped main line pressure. The Figure 16 shows the results
of the detection and isolation of the changing pitch actuator 3
parameters fault (Fault 7).

Fault 8: representing an offset in the internal converter
control loops. The Figure 17 shows the results of the detection

Figure 16 The FDI of the pitch position β3.

Figure 17 The FDI of the generator torque τ2.

and isolation of the converter fault (Fault 8) and the it sensor
signal.

The Table 4 summarized all defects, its description, its
types, its occurrence periods, its decision compared by the
SVM classifier [18] (detected or not) and the time of detec-
tion to demonstrate the efficiency of this proposed approach.

Remark 2: The proposed SVM-based approach provides
a useful generalization ability even with a reduced number
of training samples, and also to easily manipulate the nonlin-
earity of the wind turbine system. So having an objective of
solving the same problem with the same data where everyone
faces the same requirements and to respect, allow me to say
objectively that my approach has proved effective, and its su-
periority flexibility in resolving the fault diagnosis problem in
the wind compared to other methods used in the literature.

6. CONCLUSION

The fault diagnostic strategy proposed in this paper involves
several disciplines ranging from signal processing, physics,
machine learning, automatic electricity. allows to eliminate
the disadvantages to fixed of kernel parameters ofSVMclassi-
fiers and the FDI off-line, the fuzzy algorithmandSVMclassi-
fier are integrated together to design this novel strategy of FDI
online in wind turbines , adjusting the proportion and integra-
tion parameters in the real time. Set the feature vector and the
adjustment of themodel parameters are essential to detect and
isolate these defects. A compromise done manually between
detection sensitivity to noise and fault must be determined.
The proposed approach based on adaptive Fuzzy-SVM pro-
vides a useful generalization ability even with a small number
of training samples, and also to easily handle the nonlinearity
of the wind system.
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Table 4 Faults detection results.
Table 4 Faults detection results.

N Fault Fault Period Faults FDI FDI TD
site (s) values SVM [18] Fuzzy-SVM

F1 Fixed value Sensor fault Blade 1
positions

[2000,2100] β1,m1 = 5◦ Yes Yes 2000.00

F2 Gain factor Sensor fault Blade 2
positions

[2300,2400] β2,m2 = 1.2 ∗ β2,m2 Yes Yes 2301.33

F3 Fixed value Sensor fault Blade 3
positions

[2600,2700] β3,m1 = 10◦ Yes Yes 2600.51

F4 Fixed value Sensor fault rotor
speed

[1500,1600] Wr,m1 = 1.4 rad/s Yes Yes 1500.35

F5 F5a Gain factor Sensor fault rotor
speed

[1000,1100] Wr,m2 = 1.1 ∗ Wr,m2 Yes Yes 1000.01

F5b Gain factor Sensor fault genera-
tor speed

[1000,1100] Wg,m2 = 0.9 ∗ Wg,m2 Yes Yes 1000.01

F6 Changed dynamic Actuator fault, pitch
system 2

[2900,3000]
ζ2 → ζ2 = 0.45
Wn2 → Wn2 = 5.73

NO Yes 2951.00

F7 Changed dynamic Actuator fault, pitch
system 3

[3400,3500]
ζ2 → ζ2 = 0.9
Wn3 → Wn3 = 3.42

NO Yes 3409.68

F8 Offset Actuator fault con-
vertor system

[3800,3900] τg → τg + 2000 Yes Yes 3800.01
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