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The reliability of hydraulic systems is a key factor to ensure the safe and stable operation of equipment. It is very important to predict the
reliability of the hydraulic system. Without considering the changes of reliability and failure rate during running time, the traditional
method for reliability prediction cannot easily reflect the impact of processes under different operational conditions on reliability. To
address this issue, this paper presents an integrated approach to predict the reliability of hydraulic systems for industrial applications.
We do this by combining grey system theory and GO methodology. In order to validate the proposed approach, the grey model
GM(1,1) is tested on practice data from industrial production. The GO model can then be established to predict the reliability of the
hydraulic system by considering the various failure rates. Eventually, a case of a hydraulic system in a machining center is used to
illustrate the method. The result demonstrates that the GO chart with grey dynamic prediction can be used to predict the reliability
of hydraulic system successfully and more precisely.

Keywords: Grey system theory, GO methodology, Hydraulic system, Reliability prediction

1. INTRODUCTION

The reliability property of a device (i.e. a component or sys-
tem) relates to its ability to perform its required function for
the period of time it is required. Hydraulic system is the
kernel of control and power transmission in many complex
mechanical systems. It is worth noting that hydraulic sys-
tem faults can result in great losses. (Chen, et. al., 2013;
Rahimdel, et. al., 2013; Li, et. al., 2016). It is very impor-
tant to predict the reliability of complex hydraulic systems
for these and other reasons. However, traditional static relia-
bility prediction methods cannot meet the needs of reliability
analysis for increasingly complex hydraulic systems. The de-
fects of functional units in the failure analysis process lead to
uncertain problems, such as changeable working conditions

of the equipment (the equipment is subject to environmental
stress, random disturbances, and time stress factors), indeter-
minate factors on the failure mechanism of the action, discrete
failure data obtained from experiments or in other ways, in-
accurate quantification of the failure probability distribution
due to abstract systems and coupling factors among practical
engineering applications. The acquisition of hydraulic system
reliability data requires a large number of reliability experi-
ments. However, taking into account the cost, experimental
cycle and operability, it is very difficult to obtain data to this
extent.

In recent years, both numerical methods and intelligent
systems are developed for reliability analysis. One of the
most universally used methods is fuzzy theory (Knezevic and
Odoom, 2001; Pillay and Wang, 2003; Rao and Dhingra,
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1992; Ravi, et. al., 2000; Yadav, et. al., 2003). The sig-
nificance of fuzzy variables are that they facilitate gradual
transition between states and consequently, possess a natural
capability to express and deal with observation and measure-
ment uncertainties. However, when it comes to prediction,
fuzzy variables do not have this ability. Grey system theory,
first introduced by Deng (1989) in the early 1980s, is used to
cope with systems that provide partial information or have a
dynamic model. Based on the grey system theory, the first-
order single variable grey model GM(1,1) has been widely
applied to predictions of complex systems, such as vehicle
fatality risk (Mao and Chirwa, 2006), Lorenz chaotic system
(Zhang, et. al., 2009), labor formation (Yin and Tang, 2013)
and the moving path of the typhoon (Chen and Huang, 2013).
The GO method (Shen, et. al., 2000; Shen and Huang, 2004),
which is capable of evaluating system reliability and availabil-
ity, has been extensively employed in industrial fields, such as
aircraft carriers, nuclear energy plants, petrochemical plants,
and the like (Shen, et. al., 2006). For the GO method, the
operators represent components or logical relationships in a
system, which can be connected by the signal-flows. In this
regard, GO model could be established smoothly by the sys-
tem schematic diagram. In addition, the GO model can also
provide rich reliability information through the modeling pro-
cess. That is, all signal flow probabilities in each state leading
to system success or failure, probabilities. In this paper, the
GO method is used to establish the reliability model for a hy-
draulic system in the machining center. An integrated model
based on the grey model GM(1,1) has been proposed to predict
the reliability of this hydraulic system.

This paper is organized as follows. In section 2, grey sys-
tem theory and grey model GM(1,1) are introduced. A new
reliability prediction integrated model is established in section
3 based on grey system theory and GO methodology, namely
the GGO model. In section 4, a real-life case analysis for a hy-
draulic system of tray automatic exchange device (TAED) in
the machining center is organized explicitly to illustrate how
this model works. Finally, section 5 summarizes the findings
and addresses possible future research directions.

2. GREY SYSTEM THEORY AND GM(1,1)

The Grey system theory demonstrates the optimal and unique
ability of performing fitting predictions using small data sets
and limited information to allow fast, concise, accurate, and
effective predictions and understand future trends, so it has be-
come a preferred method to study and model systems in which
the structure or operation mechanism is not completely known
(Xiao, et. al., 2014; Mao, et. al., 2016). According to the un-
certainties of failures and operation in a complex hydraulic
system, it can be regarded as a grey system. The principle
of grey system theory for failure prediction is using know-
able information to infer the characteristics, status and trends
of unknowable information with failure modes, and to make
prediction and decision-making for the future development of
failures in the system. This process is called whitenization.

2.1 Operation Rules of Grey System Theory

According to the theory, the unknown parameters of the sys-
tem are represented by discrete or continuous grey numbers
encoded by the symbol ⊗. The theory introduces a number
of properties and operations on the grey numbers such as the
core of the number ⊗̂, its degree of greyness g◦, and the whit-
enization of the grey number. The latter operation generally
describes the preference of the number towards the range of
its possible values (Bezuglov and Comert, 2016). The grey
numbers that include both the upper limit and lower limit
(⊗ ∈ [a, b]) is termed the interval grey number. Denoting
grey numbers ⊗1 ∈ [a, b], a < b; ⊗2 ∈ [c, d], c < d , and
∗ is the operation between interval grey numbers. Then there
is also the interval grey number ⊗3 = ⊗1∗⊗2, ⊗3 ∈ [e, f ],
e < f .

(1) If ⊗1 ∈ [a, b], a < b, and ⊗2 ∈ [c, d], c < d , it follows
that:

⊗1 + ⊗2 ∈ [a + c, b + d] (1)

(2) If ⊗ ∈ [a, b], a < b, it follows that:

−⊗ ∈ [−b,−a] (2)

(3) If ⊗1 ∈ [a, b], a < b, and ⊗2 ∈ [c, d], c < d , it follows
that:

⊗1 − ⊗2 = ⊗1 + (−⊗2) ∈ a − d, b − c (3)

(4) If ⊗ ∈ [a, b], a < b, and a �= 0, b �= 0, ab > 0, it
follows that:

⊗−1 ∈ 1

b
,

1

a
(4)

(5) If ⊗1 ∈ [a, b], a < b, and ⊗2 ∈ [c, d], c < d , it follows
that:

⊗1 × ⊗2 ∈ min{ac, ad, bc, bd},
max{ac, ad, bc, bd} (5)

(6) If ⊗1 ∈ [a, b], a < b, ⊗2 ∈ [c, d], c < d , and c �=
0, d �= 0, cd > 0, it follows that:

⊗1 ÷ ⊗2 ∈ min{ a
c , a

d , b
c , b

d },
max{ a

c , a
d , b

c , b
d } (6)

2.2 Mathematical Model of GM(1,1)

The Grey model GM(1,1) is mainly used for the fitting and
predicting of the eigenvalues of a dominant factor in com-
plex systems. This is in order to reveal the variation rule of
the dominant factor and the changes of state in the future.
The original data possesses grey uncertainties, therefore grey
model can solve many problems which are difficult for other
prediction models to solve (Wang, et. al., 2009). In grey
system theory, the accumulated generating operation (AGO)
technique is applied to reduce the randomization of the raw
data. This processed data becomes a monotonic increase se-
quence which complies with the solution of first order linear
ordinary differential equation. Therefore, the solution curve
would fit into the raw data with high precision. In the follow-
ing section, the derivation of GM(1,1) is briefly described:
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Step 1: Assume that the original series of data with n entries
is

x (0) =
{

x (0) (1) , x (0) (2) , · · · , x (0) (k) , · · · , x (0) (n)

}
,

(7)
where raw material x (0) stands for the non-negative original
historical time series data.

Step 2: Construct x (1) by on time accumulated generating
operation (1-AGO), which is

x (1) =
{

x (1) (1) , x (1) (2) , · · · , x (1) (k) , · · · , x (1) (n)
}

,

(8)
where x (1) (k) = ∑k

i=1 x (0) (i), k = 1, 2, 3, · · · , n.

The mean generating neighbor series of x (1) is

z(1) =
{

z(1) (2) , z(1) (3) , · · · , z(1) (k) , · · · , z(1) (n)

}
, (9)

where z(1) (k) = [
x (1) (k) + x (1) (k − 1)

]
/2, k =

2, 3, · · · , n.

Step 3: The result of 1-AGO is a monotonic increase sequence
which is similar to the solution curve of first order linear dif-
ferential equation. As a result, the solution curve of following
differential equation represents the approximation of 1-AGO
data

dx̂ (1)

dt
+ ax̂ (1) = b, (10)

where ∧ represents grey predicted value complemented the
corresponding initial condition, x̂ (1)(1) = x (0)(1), with the
model parameters a and b.

Step 4: The model parameters a and b can be solved by dis-
cretization of Eq. (10), and then we can deduce the equation

dx̂ (1)

dt
= lim

�t→1

x̂ (1)(t + �t) − x̂ (1)(t)

�t
, (11)

If the sampling time interval is unity, then let �t → 1, and
therefore the Eq. (11) reduces to

dx̂ (1)

dt
∼= x (1)(k + 1) − x (1)(k) = x (0)(k + 1), (12)

where k = 1, 2, 3, · · ·
The predicted value x̂ (1), background value, is defined as

x̂ (1) ∼= Px (1)(k) + (1 − P)x (1)(k + 1) = z(1)(k + 1), (13)

where k = 1, 2, 3, · · ·
Here P is traditionally set to 0.5 in the original model. And

the source model can be obtained

x (0)(k) + az(1)(k) = b, (14)

where k = 1, 2, 3, · · ·
To do this, using the least square method and the Eq.(14),

the model parameters a and b can be written as

[
a
b

]
= (BT B)−1 BT YN , (15)

where B and Y N are defined as follows

B =

⎡
⎢⎢⎢⎣

−z(1)(2) 1
−z(1)(3) 1
...

...

−z(1)(n) 1

⎤
⎥⎥⎥⎦ , YN =

⎡
⎢⎢⎢⎣

x (0)(2)

x (0)(3)
...

x (0)(n)

⎤
⎥⎥⎥⎦ , (16)

Taking another point of view, due to the expansion of Eq.
(15), the model parameters a and b are also expressed by the
following parametric forms

a = C D − (n − 1)E

(n − 1)F − C2 , b = DF − C E

(n − 1)F − C2 , (17)

where C , D, E , and F are given by

C = ∑n
k=2 z(1)(k), D = ∑n

k=2 x (0)(k),

E = ∑n
k=2 z(1)(k)x (0)(k), F =∑n

k=2

[
z(1)(k)

]2
,

(18)

Step 5: To solve Eq. (10) together with the initial condition,
the particular solution is

x̂ (1)(k + 1) =
(

x (0)(1) − b

a

)
e−ak + b

a
, (19)

where k = 2, 3, 4, · · ·
Hence, the desired prediction output at k step can be esti-

mated by inverse accumulated generating operation (1-IAGO)
which is defined as

x̂ (0)(k + 1) = x̂ (1)(k + 1) − x̂ (1)(k)

= (1 − ea)
(
x (0)(1) − b

a

)
e−ak,

(20)

where k = 1, 2, 3, · · ·

2.3 Error Analysis

In order to determine the prediction precision of grey model
GM(1,1), the posterior error inspection act can be employed
to test it. If the prediction precision is not good,a residual grey
model GM(1,1) is needed to establish to correct the original
model.

Denoting the knowable data at time k as x (0)(k), the calcu-
lated value is x̂ (0)(k), so the mean original data is

x̄ (0) = 1

n

n∑
k=1

x (0)(k); (21)

the absolute residual is

q(k) = x (0)(k) − x̂ (0)(k); (22)

the relative residual is

ε(k) = q(k)

x (0)(k)
× 100%; (23)

the variance of original data is

S2
1 = 1

n

n∑
k=1

[
x (0)(k) − x̄?0?

]2; (24)
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the mean relative residual is

ε̄ = 1

n − 1

n∑
k=1

ε(k); (25)

the residual variance is

S2
2 = 1

n

n∑
k=1

[ε(k) − ε̄]2; (26)

the small error probability is

p = p {|ε(k) − ε̄| ≤ 0.674S1} ; (27)

the posterior error ratio is

c = S2/S1. (28)

Small error probability and the posterior error ratio can be used
to judge the failure prediction. That is, whether the results
meet the precision requirements. If the residual model starts
fitting at the mth residual, then the corrected residual model
is
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x̂ (1)(k + 1) = [
x (0)(1) − b

a

]
e−ak + b

a , k < m
x̂ (1)(k + 1) = [

x (0)(1) − b
a

]
e−ak + b

a + ε(1)(m), k = m

x̂ (1)(k + 1) = [
x (0)(1) − b

a

]
e−ak + b

a +
[
ε(1)(m) − b1

a1

]
(
e−a1(k−m+1) − e−a1(k−m)

)
, k > m

(29)

3. RELIABILITY PREDICTION WITH
GGO

Traditional reliability prediction methods always ignore the
relation between the parts and entire system, that is, only to
predict the entire hydraulic system with little consideration
of reliability prediction of parts in the system or vice versa.
Furthermore, the actual operation is a random process, and it
is unreasonable that the probability of failure in this process
is considered to be a precise value. For these defects, a GGO
model, which combines the virtue of grey system theory and
GO methodology, is established for reliability prediction of a
complex hydraulic system.

3.1 GO Methodology

The GO methodology is a method of system reliability with
success-oriented. The GO model is composed of operators
and signal-flows, and the operators represent components or
logical relationships in the system and the signals represent
connections between the components. In the GO model, there
are 17 kinds of operators (Fan, et. al., 2015) which are shown
in Figure 1. All operators, which have its individual func-
tion states and computational rule, can generally be divided
into three groups: logical operators, functional operators and
special operators.

(1) Logical operators (including type 2, 9, 10, 11, 14, 15)
represent just the specific computation logics without
considering their own functional states.

(2) Functional operators (including type 1, 3, 4, 5, 6, 7, 8,
16, 17) have their own functional states as well as they
have their various computation logic, and that is different
from the logical operators.

(3) Special operators (including type 12 and 13): type 12,
which is called a path separator, always represent a
monopole multi-throw switch. Type 13 represents the
multiple inputs and output component,which allows cus-
tomization of existing parameters to achieve the function
you need.

In the GO methodology, the signal is tagged by a non-negative
integer, which represent the signal state, such as 0 which rep-
resents a premature state; 1, 2, . . ., N − 1 represent multiple
success states and N represents the failure state. The probabil-
ity of input signal state and output signal state are represented,
respectively, by PS(i) and PR(i), i = 0, 1, 2, . . ., N . For the
time-sequential system, i = 0, 1, 2, . . ., N can also represent
the signal arrival time point. Among all operators, type 1, 2, 5,
6 and 10 are the most commonly used operators in GO model.
Liu, et. al. (2015) present the quantification formulas of the
operators.

3.2 Modelling of GGO

The process of modeling GGO to predict the reliability of the
hydraulic system includes the following steps.

Step 1: Analyzing the given hydraulic system, specifying the
range, features and components of the system, determining
the structure and reliability index of the system, and drawing
schematic drawing or flowchart of the system.

Step 2: Determining the input and output of the hydraulic sys-
tem. The input comes from the external events of the system,
and the output is a set of output signals which indicates the
state of the system.

Step 3: Determining the normal operating state of the hy-
draulic system, confirming the minimum required set of out-
put signals of normal operation system.

Step 4: The components in the hydraulic system are repre-
sented by operators, leading to a translation of into a schematic
drawing or flowcharts of the system. These are then trans-
formed into a GO chart, connecting the operators with signal
flow.

Step 5: Translating the statistic site failure data into state
probability data of all components in the hydraulic system,and
then brought to the GM(1,1) prediction model. If the result of
failure prediction does not meet the precision requirements, a
residual grey model GM(1,1) could be established to correct
the original model. Meanwhile, inputting the corrected data
according to operator number can be done.

Step 6: According to the GO chart and grey prediction data
from previous step, calculating the output signal of the hy-
draulic system gradually based on the operation rules of op-
erator.

Step 7: Comparing the prediction precision of GGO predic-
tion model with that of traditional static GO methodology and
FTA.

52 Engineering Intelligent Systems



J. LIU

Figure 1 Operators defined in the GO methodology.

4. NUMERICAL EXAMPLE

The hydraulic system in the TAED is one of the most important
functional units of the machining center, and it is also one of
the parts with the higher failure rate. Consequently, it is very
important to identify weaknesses and improve the efficiency
of the machining center by the reliability prediction analysis.
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Figure 2 Systematic chart of hydraulic system in TAED.

4.1 Working principle of the TAED

A typical structure of the hydraulic system of the TAED is
shown in Figure 2. First of all, the left end of the electromag-
net of valve 7 is energized, which connected to the left side
of the electromagnetic valve; at this moment, the lifting hy-
draulic system began to work; the cylinder lifted the bracket
until the sensor switch detected the rising position, then the
sensor switch sends electric signals to valve 7, which is out of

power supplement under the control of electric device; now,
the valve 7 is in middle and the bracket rose to the right po-
sition. Secondly, the moment the sensor switch detected the
rising position, it sends signals to the control system, and the
left end of the valve 11 is energized, which connects to the
left side of the electromagnetic valve. At this moment, the ro-
tary hydraulic system begins to work; the cylinder rotated the
bracket until the sensor switch detected the bracket rotation of
180◦, then the sensor switch send electric signals to valve 11,
which is out of power supplement under the control of electric
device. Now, the valve 11 is in middle and the bracket rotated
to the right position. Thus, the exchange process of TAED is
completed.

4.2 Modelling of TAED Based on GO
Methodology

Based on the basic theory of the GO methodology, we can
obtain the GO chart translated from the systematic diagram of
hydraulic system of TAED, shown in Figure 3.
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Figure 3 GO chart of hydraulic system in TAED.

4.3 Calculating the State Probability Based
on GM(1,1)

Fifteen machining centers are chosen as a sample, and the
number and the time of abnormal incidents in the hydraulic
system of TAED is recorded at equal time intervals T=24h.
The failure rate can be obtained according to the ratio of the
number of abnormal units and total units during the interval.
The state probability of each signal flow is obtained in each
time interval T1-T5 based on the calculation rules. This is
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Table 1 Name of table Operator data and predictive state probability of hydraulic system in TAED.

No. Type of Component
State Predictive

operator
probability state probability

T1 T2 T3 T4 T5 T6

1 5 Hydraulic oil tank 0.999 0.998 0.998 0.999 0.998 0.9974
2 1 Filter 0.995 0.994 0.993 0.994 0.994 0.9929
3 1 Cooling apparatus 0.999 0.998 0.997 0.999 0.999 0.9948
4 6 Vane pump 0.990 0.986 0.986 0.990 0.987 0.9824
5 5 Motor 0.997 0.997 0.996 0.997 0.997 0.9961
6 1 Relief valve 0.994 0.992 0.992 0.994 0.993 0.9893
7 6 Electromagnetic Reversing Valve 0.993 0.991 0.990 0.993 0.992 0.9933
8 5 Control signal 0.999 0.998 0.998 0.999 0.998 0.9976
9 1 One-Way Valve 0.995 0.993 0.993 0.994 0.994 0.9907

10 1 Throttle Valve 0.995 0.993 0.993 0.994 0.993 0.9925
11 1 Hydraulic Cylinder 0.993 0.992 0.992 0.993 0.993 0.9922
12 6 Electromagnetic Reversing Valve 0.993 0.992 0.991 0.993 0.992 0.9916
13 5 Control signal 0.999 0.998 0.998 0.999 0.998 0.9983
14 1 One-Way Valve 0.995 0.995 0.994 0.995 0.995 0.9946
15 1 Throttle Valve 0.995 0.994 0.994 0.995 0.994 0.9943
16 1 Hydraulic Cylinder 0.993 0.991 0.991 0.993 0.992 0.9915
17 1 Gear Rack Pair 0.993 0.991 0.991 0.992 0.992 0.9897

Table 2 Precision examine

No. Type of operator Component
Precision examine coefficient

p c
1 5 Hydraulic oil tank 0.9624 0.3164
2 1 Filter 0.9638 0.3066
3 1 Cooling apparatus 0.9513 0.2216
4 6 Vane pump 0.9607 0.1758
5 5 Motor 0.9662 0.2863
6 1 Relief valve 0.9505 0.3327
7 6 Electromagnetic Reversing Valve 0.9606 0.3094
8 5 Control signal 0.9582 0.2125
9 1 One-Way Valve 0.9517 0.2036

10 1 Throttle Valve 0.9531 0.1865
11 1 Hydraulic Cylinder 0.9511 0.2986
12 6 Electromagnetic Reversing Valve 0.9606 0.3411
13 5 Control signal 0.9581 0.2358
14 1 One-Way Valve 0.9520 0.2170
15 1 Throttle Valve 0.9575 0.2061
16 1 Hydraulic Cylinder 0.9605 0.2653
17 1 Gear Rack Pair 0.9522 0.3022

shown in Table 1. Then five state probability of each com-
ponent in the hydraulic system of TAED is regarded as the
original data and brought into Eq. (10), Eq. (19), Eq. (20),
the probability of each component in the next interval T6 is
obtained, such as shown in the predictive state probability
column of Table 1. Then, the state probability and predictive
state probability of each component operator is brought into
Eq. (27) and Eq. (28) to implement posterior error inspection
act, such as shown in Table 2. Comparing with the indices in
Table 3, it shows that the prediction results meet the precision
requirements, and the prediction model is credible.

Table 3 Grade of precision examine.

Grade p c
Excellent > 0.95 < 0.32

Good > 0.80 < 0.45
Average > 0.70 < 0.55

Bad ≤ 0.70 ≥ 0.65
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4.4 Calculating Reliability Using GO
Methodology

In this hydraulic system of TAED, the signal flow 6 is named
the shared signal for its being separated into two ways to cross
the electromagnetic valve. The failure probability of the hy-
draulic system with signal flows cannot be calculated directly.
Therefore we have to reference a new mathematical method-
ology to quantify the probability, and its quantitative calculat-
ing process is as follows. Suppose that Psi stands for the state
probability of the signal flow of number i , and Pci stands for
the state probability of the operator of number i , then

(1) the input operator:

PS1 = PC1, PS4 = PC5, PS7 = PC8, PS12 = PC13;
(2) the signal flow 6:

PS6=PC1 PC2 PC3 PC4 PC5 PC6;
(3) the signal flow 11:

PS11=PS6 PC7 PC8 PC9 PC10 PC11;
(4) the signal flow 17:

PS17=PS6 PC12 PC13 PC14 PC15 PC16 PC17.

Let Ps6=0, then we can get the state probability of signal flow
18:

P0
S18=PS11 PS17;

Let Ps6=1, then we can get the state probability of signal flow
18:

P1
S18=PS11 PS17 = PC7 PC8 PC9 PC10

PC11 PC12 PC13 PC14 PC15 PC16 PC17.

Finally, we can get the accurate state probability of signal flow
18:

PS18 = (1 − PS6) P0
S18 + PS6 P1

S18.

The signal flow 18 represents the output signal of the hydraulic
system, so the performance of the hydraulic system can be
assessed according to the state probability of signal flow 18
and the functional requirements of the hydraulic system. The
predictive state probability of each component in Table 1 is
brought into the quantitative calculating process above, so we
can obtain the state probability of the TAED hydraulic system
in the machining center. That is, as P(t) = 0.8857.

4.5 Benchmark Analysis

In order to verify the calculation precision of the GGO model,
we used the traditional GO methodology and FTA to calcu-
late the reliability of the hydraulic system of TAED mentioned
above as well. Due to the limited space, the FTA process has
not been elaborated here. The calculation results are shown in
Table 4. From the benchmark analysis results shown in Table
4 above, we can see clearly that comparing with GO method-
ology and FTA, the relative error of the GGO model proposed
in this paper is the smallest one. Meanwhile, GGO model
can reflect clearly that the functional and logical relationship
between system and components, so it is very adaptive to the
reliability prediction of a complex hydraulic system.

Table 4 Benchmark analysis.

Reliability
The authentic

The analytical

probability
reliability

reliability

probability
probability

GGO GO FTA
0.8906 0.8857 0.8527 0.8649

Relative error 0 0.55% 4.26% 2.89%

5. CONCLUSION

In this paper, the reliability of a complex hydraulic system is
analysed, and the new reliability prediction integrated model
based on grey system theory and GO methodology is estab-
lished. The improvement of the calculation of GO method-
ology based on the application of grey system theory makes
up for the lack of authenticity of the failure data sources, and
it resolves the uncertainty on the failure rate of components
as well. The precision of the GGO model is proved by being
introduced to reliability prediction of the hydraulic system of
TAED in the machining center. It is compared with the tradi-
tional GO methodology, FTA and the authentic failure data,
so it provides a comprehensive basis for reliability design and
distribution. However, under the limited conditions, the fail-
ure rate of components is lack of certain accuracy, which is
the original of the error. So in the future, it is necessary to use
more accurate methods to collect more data.
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