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The complexity of the contact network parts and dramatic changes in the background environment make it difficult to detect the
process. Based on this, this paper builds a corresponding support vector algorithm based on the kernel function to detect the image
of the contact network. Meanwhile, this study establishes a support vector training model based on linear kernel, radial basis kernel
and polynomial kernel. It is a single texture type training model based on linear kernel support vector method. In this study, the
effectiveness of the kernel-based support vector method for insulator identification is verified by comparing the time and recognition
performance of each model. At the same time, this study verifies the validity of the model by experimentally analyzing the spatial
positioning accuracy of the mapping model. This provides a theoretical reference for subsequent related research.

1. INTRODUCTION

The most common and mature method for contact network
detection applications today is contact detection. The method
is mainly realized by a contact net detecting vehicle, and vari-
ous parameters such as the height of the contact net, the offset
of the contact line, the pressure between the bow nets, the
hard point and the offline are detected by assembling various
types of sensors on the detecting vehicle. After a long period
of development, contact detection is constantly improving,
but there are still some shortcomings: first of all, all kinds
of detection will directly contact the wire, which will cause
errors.

Secondly, contact inspection vehicles will occupy the road
and affect the normal operation of high-speed trains. In par-

ticular, high-speed trains are now developing at a faster speed,
with fewer trains, and generally operate during the day. Fi-
nally, there are some parameters that the test vehicle cannot
measure, such as the angle of the positioner, the wear value of
the contact line, the breakage of the insulator, and the foreign
matter on the pillar.

In 1993, KIMURA et al. in Japan used ultrasonic ranging
technology to achieve non-contact detection of bow network
parameters (Wang, 2014). Zhang used laser-assisted image
processing technology to design a vehicle monitoring system
for wheel, brake pad and pantograph wear, which automates
and increases labor productivity. Siemens in Germany de-
veloped an instrument that uses the principle of ultrasonic
ranging to measure the height of the contact line and the po-
sition of the deviation (Zhang, 2015). In 2007, Japan used
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image processing algorithms to develop a new system that
extracts pantographs and trolley lines from images and calcu-
lates the three-dimensional position of contact points (Zhai,
2014). Yang et al. studied the pantograph contact line system
with an infrared camera and implemented online monitoring
of the bow network system using Hough line detection (Yang,
2015). She used three cameras to build an in-vehicle system
that implements stereoscopic imaging technology, combined
with infrared and ultraviolet light analysis, and finally it au-
tomatically detects foreign objects in the catenary suspension
device (She, 2017). Pei first modeled the interaction between
the pantograph and the contact net, and then divided the sur-
face of the pantograph into three areas: safety, danger and
fault.

Finally, the fault state of the system is analyzed by the num-
ber of contact points in each area, and the actual video image
is used for real-time detection (Pei,2017). Dong constructed a
pantograph geometric model using images taken by the pan-
tograph network and used the model to identify the type of
pantograph (Dong, 2015). In order to measure the geomet-
ric parameters of the contact network in real time, Rajesh et
al. developed a real-time measurement system based on the
measurement principle of binocular vision, which has high
measurement accuracy and high speed (Rajesh, 2015).

At present, the demand for contact network image detection
is increasing. Although there are many researches and papers
on actual contact network image detection, practical appli-
cations are rare. The main reason is the complexity of the
contact network parts and the dramatic changes in the back-
ground environment (Hao, 2017), especially in high-speed
conditions, making image processing and recognition very
difficult. Therefore, this paper uses image detection based on
support vector machine (support vector) as a tool to realize
automatic detection of the contact network support device.

2. RESEARCH METHODS

Insulator detection technology based on computer vision im-
age processing has been extensively studied as a non-contact
detection method. Compared with the traditional manual
method, the time consumption of the insulator cleaning work
and the labor intensity of the inspection personnel are greatly
reduced. Therefore, the identification of insulators through
machine vision technology has become the research focus of
high-voltage overhead transmission line maintenance and in-
telligent cleaning.

This article uses the most widely used Gaussian filtering.
The Gaussian filter is often referred to as the most useful fil-
ter. It is a linear smoothing filter that selects weights based
on the shape of a Gaussian function. The specific operation
is to scan each pixel of the image with a template, and re-
place the value of the pixel just scanned with the weighted
average of the pixels in the domain of the template. The two-
dimensional discrete Gaussian functions commonly used in
image processing are as follows:
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After the image is filtered, in order to accurately find the

position of the carbon slide, according to its contour feature,
we need to perform edge detection on the image to extract
the desired contour information. The Canny operator used to
extract contours in this paper is a multi-level edge detection
algorithm developed by John F. Canny in 1986 and is rec-
ognized as the best edge detection algorithm today. In order
to meet the requirements of low error rate, high localization
and minimum correspondence, the Canny algorithm uses a
variational method. Similar to the sobel filter, the Canny al-
gorithm obtains the possible edge points by calculating the
magnitude and direction of the gradient (Shi, 2014). A pair
of convolution arrays are applied to the x and y directions,
respectively:
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Then we use the following formula to calculate the gradient
magnitude and direction separately:
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The gradient direction generally takes four directions: 0
degrees, 45 degrees, 90 degrees, and 135 degrees. Some non-
edge pixels are then excluded by maximal suppression, and
only candidate edges are preserved. The hysteresis thresh-
old is then utilized to determine the true boundary required.
The study requires two thresholds: When the calculated pixel
amplitude exceeds the high threshold, it remains as an edge;
When the pixel value is lower than the low threshold, it is con-
sidered as a non-edge pixel, and is deleted; When the pixel
amplitude is between the high threshold and the low thresh-
old, it is retained as a boundary only when it is connected to
a pixel above the high threshold.

By analyzing and training different kernel functions of sup-
port vector algorithm, a variety of visual recognition models
are established, and the time-consuming and recognition ac-
curacy of various kernel functions are compared. Considering
that different model recognition speeds and recognition accu-
racy are not available, the research will select a recognition
model with characteristics of speed and accuracy to establish
a multi-core comprehensive recognition system.

Based on the multi-core support vector-based insulator vi-
sual recognition method and the recognition of the visual char-
acteristics of the insulator, the multi-core support vector al-
gorithm is used to perform multi-identification and compre-
hensive evaluation of the sample. The main research contents
are: 1) Visual feature recognition of insulators. Experiments
were carried out on the spatial structure, texture, color and
gradient distribution of the insulator to evaluate the effective
degree of each characteristic parameter. The available feature
parameters were processed by principal component analysis
to establish a feature sample suitable for post processing. 2)
Research also focused on multi-core support vector learning
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methods. Insulator feature samples are learned by kernel func-
tions such as linear kernel, RBF kernel, polynomial kernel, etc.
The training time and accuracy under different kernel function
support vector algorithms are statistically calculated. 3) Pa-
rameter optimization based on group intelligent optimization
algorithms. By summarizing the parameter distribution law of
support vector algorithm, a suitable heuristic group intelligent
search algorithm is selected. This permits us to optimize the
multi-parameters of the penalty factors and kernel coefficients
of the support vector to improve the training model.

The training sample is assumed to be a set of samples to be
classified containing insulator targets and non-insulator inter-
ference targets. x represents a visual feature sample whose
target is an insulator, and o represents a corresponding visual
feature sample whose target is a non-insulator interference
object. Moreover, to establish the insulator visual recognition
mode, it is necessary to find a classification line H to com-
pletely separate the visual characteristic values of the insulator
and the non-insulator interference object. For the entire fea-
ture sample input space applied to the insulator visual feature
recognition, H can be used as the optimal classification sur-
face for this high-dimensional space. A set of feature data is
set to {(xi , yi ), i = 1, 2, . . . , n}, and the optimal classifica-
tion line available in the two-dimensional space is equation
(6). Similarly, for the high-dimensional space of the insula-
tor visual feature sample, the straight line H1 and H2 passing
through the visual feature sample closest to the classification
surface are expressed as equation (7). The constant term pa-
rameter b is adjusted to obtain equation (8). The optimal
classification surface of the insulator visual feature in high
dimensional space is

f (x, b) = 〈w · b〉 + b (6)

H1 〈w · x〉 + b = k1 H2 〈w · x〉 + b = k2
(7)

H1 〈·x〉 + b = −k H2 〈w · x〉 + b = k (8)

The optimal classification surface of the insulator visual
feature in high dimensional space is H 〈w · x〉 + b = k1.
Letting τ = w

k , ρ = b/k, then H _1 and H _2 can be expressed
as equation (9).

H1 τ · x + ρ = −1 H2 τ · x + ρ = 1 (9)

Therefore, the “interval” of the insulator visual feature sam-
ple boundaries H 1 and H 2 is max /|(|2|)|. The constraint
condition for visually identifying the optimal solution for this
insulator is: 1) When the target is an insulator, ie, yi = 1,
w · xi + b >= 1.2) When the target is a non-insulator inter-
ference term, ie. yi = −1, w · xi + b <= −1. The objective
function can be defined as equation (10),and the penalty factor
C and the relaxation variable ξi can be introduced to repre-
sent the objective function as equation (11). The Lagrange
equation is constructed and transformed into a quadratic pro-

gramming problem. This can be seen in equation (12).{
min 1
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Among them, αi , βi , i = 1, 2, ..., n is Lagrangian multipli-
ers. According to the saddle point theorem, the Lagrangian
equation is solved by using L, partial derivative of w, b, and
ξi respectively to obtain the equation (13). Equation (13) is
substituted into equation (12) to get the dual problem. The
result can be seen in equation (14). The dual equation (14) is
solved to obtain the final decision function, that is, the insu-
lator visual recognition model, as shown in equation (15). In
the formula, K (xi , x j ) is a kernel function that satisfies the
Hilbert-Schmidt theorem and the Mercer condition.⎧⎨
⎩
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i=1 αi yi = 0
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f (x) = sgn(

∑
x=sv αi K (xi , x j ) + b)

(14)

The Lagrangian multiplier solved in equation (14) corre-
sponds to the insulator characteristic 〈xi · x j 〉. It is known
from the inequality relation of the formula (10) that it needs
to satisfy the KKT (Karush-Kuhn-Tucker) condition, that is,⎧⎨

⎩
ai ≥ 0

yi f (xi ) − 1 ≥ 0
ai(yi f (xi )) − 1 = 0

(15)

According to the KKT condition, there is always ai = 0
or yi f (xi ) = 1 for training arbitrary samples. Therefore:
1) When ai = 0, the sample has a value of 0 in the sum of
equations (15) and does not affect f (xi ). When ai ≥ 0, then
yi f (xi ), indicating that the sample is at the maximum interval
boundary and is a support vector. It can be seen from the above
conditions that the support vector machine algorithm does not
need to save all sample values after training the sample. The
final model (15) is only related to the support vector.

3. RESULTS

Aiming at the problem that the calibration samples in the cur-
rent camera indirect calibration method are incomplete and
the model expression is fuzzy. In this study, a hexagonal
lattice calibration plate readable by the target number and a
support vector algorithm based on structural risk minimiza-
tion are used. A support vector calibration method based on
full-view sampling of the binocular system is proposed.
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At the same time, this study analyzes the calibration model
and verifies the feasibility of the method. The schematic dia-
gram of the experimental equipment constructed in this study
is shown in Figure 1.

The full-view sampling calibration experiment uses a
640×480 USB-driven camera, and the world coordinate sys-
tem is set by default to the center of the calibration plate. The
specific process is: 1) Installation of binocular vision system
and calibration plate lifting equipment. 2) The calibration
plate and the binocular vision system are adjusted so that the
center of the calibration plate is in the image acquired by the
two cameras and has a large image intersection. 3) The lifting
table is adjusted and the calibration sample is collected at the
current position. 4) The lifting platform is gradually raised by
5 mm up to a height of 50 mm, and step 3 is repeated. After
that, the lifting platform is gradually lowered by 5 mm, and
step 3) is repeated, thereby reducing the error. A sample of
the calibration plate collected by the binocular vision system
is shown in Figure 2.

In order to compare this with the traditional sampling
method, taking the calibration plate sample points collected
at 50mm as the standard, we select 252 detection points from
all the samples to establish the sample 1 (This is shown in
Figure 2(a)). The full-view sampling sample considers the
sample size and the sampling detection principle to select 568
detection points to establish the sample 2, as shown in Figure
2(b). At the same time, 568 test points in the total sample
were taken as test samples of the two methods for the later
precision test.

The acquired detection points are taken as input on the vir-
tual plane coordinates (U1,V1,U2,V2) of the left and right
cameras. Their world coordinates (X1,Y1,Z1) are taken as
outputs. The sample is trained by the support vector to con-
struct three axial output models, so that the final calibration
model can achieve a given input-output mapping relationship.
In the MATLAB environment, the linear kernel function sup-
port vector algorithm training samples are used to obtain the
calibration model. model.rho represents the constant term in
the model, and model.sv_coef represents the support vector
coefficient in the model. The constant mathematical term, the
support vector coefficient, and the support vector are substi-
tuted into the objective function to obtain the specific mathe-
matical models of X1, Y1, and Z1, respectively.

In the support vector algorithm, the prediction accuracy of
the model established by different penalty factors is differ-
ent, so choosing the appropriate penalty factor is the key to
establish a good calibration model. In the experiment, the
calibration model of the X, Y and Z axes was established by
the optimization algorithm [58] with the penalty factors of
0.65, 0.45 and 0.95. In order to verify the effectiveness of the
penalty factor, the comparison model is established by using:
different penalty factors, coefficient of determination, mean
square error and mutual correlation. These are used as evalua-
tion indicators for comparative analysis. In order to verify the
effectiveness of the penalty factor, the comparison model is
established by using different penalty factors, and the compar-
ison coefficient is determined by determining the coefficient,
the mean square error and the cross-correlation coefficient.
The results are shown in Table 2, Table 3, Table 4, and Figure

4.
In Fig. 3, the abscissa is the position of the detection point

on the coordinate axis, and the ordinate is the average error be-
tween the world coordinates mapped by the calibration model
on the scales of the coordinate axes and the actual world co-
ordinates. From Fig. 3, the calibration model can be obtained
when the penalty factor has the values 0.65, 0.45, and 0.95.
The reconstruction position and the actual coordinate posi-
tion of the detection point are smaller than the average error
of the calibration model constructed by other values. From
Table 2 to Table 4, it can be concluded that in the establish-
ment of three axial output models, when the penalty factor is
0.65, 0.45, 0.95, and the established calibration model is com-
pared with other calibration models, the mean square error of
the reconstructed coordinate position and the actual coordi-
nate position is smaller and the cross-correlation is stronger.
The results show that the penalty factor obtained by the op-
timization algorithm has higher calibration accuracy than the
calibration model established by other penalty factors.
In this case the validity of the selected parameters is verified.

The sample 1 acquired by the traditional sampling method
is built with the same optimization algorithm to establish a cal-
ibration model based on the support vector and compared with
the calibration model established by the method. Meanwhile,
the plane coordinate 4 coordinate values (U1,V1,U2,V2) are
respectively converted into world coordinate three-coordinate
values (X1,Y1,Z1) and the results are shown in Fig. 4 and
Table 5. In Fig. 5, the abscissa is the position of the detection
point on the coordinate axis, and the ordinate is the error rate
distribution of the reconstructed coordinate value. In addi-
tion to this the actual coordinate value of the detection point
is at each position. In Table 5, the two models are quanti-
fied by determining the coefficient, mean square error, and
cross-correlation coefficient.

4. DISCUSSION AND ANALYSIS

In Figure 2, the first frame is the sample collected by the
camera when the calibration plate is at 0 mm, and the 11th
frame is the sample collected by the camera when the calibra-
tion plate is at 50 mm. In the process of obtaining the sample
point number and coordinate value collected in the calibration
plate, DataID, CameraIdx, ObjIdx, and ObjPoseIdx are input
parameters as indexing numbers of the calibration model, the
observation camera group, the calibration target, and the cal-
ibration target position. In the output parameters, Index is
the number of the detection point on the calibration board,
Row is the row coordinate of the detection point in the im-
age, Column is the column coordinate of the detection point
in the image, and Pose is the relative position of the calibra-
tion object and the camera. Based on the binocular system,
the detection point number is acquired, and the target plane
4 coordinates (U1,V1,U2,V2) and the world coordinate val-
ues (X1,Y1,Z1) on the calibration plate are acquired. A total
of 2839 detection points are effectively collected, as shown
in Table 1. Each detection point contains information such
as left and right image horizontal and vertical coordinates and
world coordinates. Among them, the plane 4 coordinate value
unit is a pixel, that is, the pixel coordinates of the image taken
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Figure 1 Schematic diagram of the experimental equipment.

Table 1 Partial samples collected by the binocular vision system.

Serial number
Actual coordinates /mm Left camera Right camera
X Y Z U1 V1 U2 V2

a −38.707 67.049 5.00 36.335 21.968 429.379 45.162
b −34.836 60.344 10.00 40.774 34.83 443.762 58.216
c −38.707 53.639 15.00 19.34 47.334 436.09 71.091
d −27.094 46.935 20.00 41.623 60.256 476.775 83.872
e −23.223 40.23 25.00 38.733 73.05 496.934 96.712
f −19.352 33.525 35.00 32.71 84.073 522.248 107.795
g −15.481 26.82 40.00 61.94 102.694 571.255 126.306
h −19.352 20.116 45.00 9.796 121.318 536.623 145.509

Table 2 Error Analysis (X-Axis).

Serial number Penalty factor Decisive factor Mean square error Cross correlation coefficient
1 0.552 0.997 1.495 0.999
2 0.652 0.997 1.452 0.999
3 0.752 0.997 1.483 0.999
4 2.602 0.997 1.64 0.999

Table 3 Error Analysis (Y-axis).

Serial number Penalty factor Decisive factor Mean square error Cross correlation coefficient
1 0.352 0.994 13.018 0.998
2 0.452 0.994 12.768 0.998
3 0.552 0.994 12.997 0.998
4 1.802 0.994 13.037 0.998

Table 4 Error Analysis (Z-Axis).

Serial number Penalty factor Decisive factor Mean square error Cross correlation coefficient
1 0.852 0.993 1.635 0.997
2 0.952 0.993 1.618 0.997
3 1.052 0.993 1.636 0.997
4 3.802 0.992 1.825 0.997

by the target point in the left and right view.
The support vector machine algorithm based on kernel func-

tion is applied to the visual recognition task of insulators, and
the insulator visual recognition model is established based

on linear kernel, radial basis kernel, polynomial kernel and
different single characteristic linear kernels.. By comparing
and analyzing the time and recognition performance of each
model, this study verifies the validity of the kernel-based sup-
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Table 5 Comparison and analysis of calibration results of two sampling methods.

Sampling method Decisive factor Mean square error Cross correlation coefficient

Traditional sampling
X 0.995 2.043 0.997
Y 0.992 16.948 0.996
Z 0.991 1.694 0.995

Full view sampling
X 0.995 1.450 0.997
Y 0.992 12.766 0.996
Z 0.991 1.616 0.995

Figure 2 Samples collected by the binocular vision system.

port vector method for insulator identification and determines
the multi-core insulator visual recognition model based on
LBP, HOG linear kernel, and support vector model based on
full sample linear kernel, radial basis kernel and polynomial
kernel.

The performance impact of parameters on the final recog-
nition model in the support vector method based on kernel
function is analyzed. By comparing the Gaussian normal dis-
tribution function, this study explains the role of the support
vector number in the model prediction, and determines the
performance of the model by the model identification accu-
racy and the number of support vectors. Meanwhile, through
the classification algorithm to reconcile the averaging func-
tion, this study proposes a support vector model performance
evaluation function. In addition, this study conducts an exper-
imental analysis of a variety of swarm intelligence optimiza-
tion algorithms to determine the parameters of the support
vector kernel function method by differential evolution algo-
rithm. On the basis of ensuring the recognition accuracy of
the final insulator visual recognition model, this study reduces
the number of radial basis kernel support vectors to 62, and
the number of polynomial kernel support vectors to 239.

An insulator binocular vision spatial positioning system
is established. Meanwhile, the hexagonal lattice calibration
plate and HALCON operator are used to realize the full-view
sampling of the binocular vision system, and the mapping
model of the two-dimensional target to the three-dimensional
spatial position is established by the support vector algorithm.
Through the experimental analysis, the calibration error of the
model established by the traditional sampling method is re-
duced by 24.51%, which verifies the validity of the model
and combines with the insulator visual recognition model to
realize the spatial positioning of the insulator.

In this project, a visual recognition model based on kernel
function support vector algorithm is established in the research
of insulator visual recognition, but it also has the following
shortcomings: (1) Target extraction with interference insula-
tors achieves accurate target segmentation extraction in the
laboratory environment, but in the actual environment due to
changes in sunlight, shooting angles and other environmental
factors, the insulator target is incompletely extracted or carries
background interference. By improving the performance of
the insulator extraction algorithm and training with the insu-
lator image samples with interference, the anti-interference of
the final recognition model can be further improved. (2) When
the differential evolution algorithm is iterative, the long-term
insulator visual recognition model uses the differential evolu-
tion algorithm to optimize the support vector kernel function
parameters. However, when the optimization iteration is too
long, the performance is not completely leading in the test
function comparison. Improving the computational speed of
the differential evolution algorithm can further improve the
construction efficiency of the insulator visual model. (3) The
visual model of the insulator to be further enriched is com-
posed of Hu invariant moment, LBP descriptor, HOG descrip-
tor, Haar descriptor, but the target texture description operator
with better performance will be proposed with the develop-
ment of target recognition technology. The timely adoption
of new research theories can further improve the visual recog-
nition performance of insulators.

5. CONCLUSION

In this paper, the visual recognition system of the contact net
insulator is studied, and the Canny operator used for the con-
tour is extracted. By analyzing and training different ker-
nel functions of support vector algorithm, a variety of visual
recognition models are established, and the time-consuming
and recognition accuracy of various kernel functions are com-
pared. Considering that the recognition speed and recognition
accuracy of different models are not available, the identifi-
cation model with characteristics of speed and accuracy is
selected to establish a multi-core comprehensive recognition
system. In this paper we aim to resolve the problem that the
calibration samples in the current camera indirect calibration
method are incomplete and the model expression is fuzzy. For
this purpose this study utilizes a hexagonal lattice calibration
plate readable by the target number and a support vector algo-
rithm based on structural risk minimization. Meanwhile, this
study proposes a support vector calibration method based on
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(a) Traditional sampling method (sample 1) (b) Full-view sampling method (sample 
2) 

Figure 3 Sample distribution under different methods.

(a) X-axis direction (b) Y-axis direction (c) Z-axis direction

Figure 4 Model analysis of different support vector parameters.

 
(a) Sample I calibration error   

 
(b) Sample II calibration error   

Figure 5 Comparison analysis of error distribution between two sampling methods.
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full-view sampling of binocular system and analyzes the cal-
ibration model to verify the feasibility of the method. In this
study, the support vector machine algorithm based on kernel
function is applied to the visual recognition task of insulators,
and the insulator visual recognition model based on linear
kernel, radial basis kernel, polynomial kernel and different
single characteristic linear kernels is established. By com-
paring and analyzing the time and recognition performance
of each model, the validity of the kernel-based support vector
method for insulator identification is verified. At the same
time, the penalty factor obtained by the optimization algo-
rithm in this paper has higher calibration accuracy than the
calibration model established by other penalty factors, and
the validity of the selected parameters is verified.
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