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A solution of travel route planning
problem based on improved ant
colony algorithms
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In order for the ant colony algorithm to be applied to the tourism route planning problem, we need the algorithm to obtain the optimal
solution with a relatively high probability when solving the traveling salesman problem. The solution time of the algorithm is relatively
short. In this paper, the path selection probability and pheromone updating rules of ant colony algorithm are improved, the local
search of the optimal solution is carried out, the solving process of the algorithm is optimized, and the reasonable parameters of the
algorithm are determined. Through performance simulation analysis this algorithm has higher search accuracy and a shorter solution
time for the traveling salesman problem.
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1. INTRODUCTION

Tourism route planning can be divided into three parts using
the regional scope: tourism that is inter-city, intra-city and
also scenic spots. The tourism route planning between cities
and scenic spots in the scenic area starts from one point, goes
through other points, and only goes through once, and finally
returns to the starting point of the route planning, that is, the
TSP loop problem [1]. This is a classic NP problem. So there
are many solutions. These include: ant colony algorithm,
annealing algorithm, genetic algorithm, particle swarm opti-
mization and the tabu search algorithm. In this paper, dynamic
combinatorial optimization and ant colony algorithm are used
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to solve the problem. The ant colony algorithm is a simu-
lated evolutionary algorithm. It was first proposed by Italian
scholars M. Dorigo, V. Maniezzo, A. Colorini, etc. [2-4]. It
is a heuristic search algorithm for combinatorial optimization
problems. The algorithm solves TSP problems, assignment
problems [5], job-shop scheduling problems and so on. Good
results have been achieved. In tourism route planning, the
system needs to give an optimal route planning in the short-
est time after the user submits the request. In this paper, the
improved ant colony algorithm is studied and an encounter
algorithm is proposed. The encounter algorithm can improve
the quality of an ant’s one-time travel and shorten the opera-
tion time of the system. Through experiments, the improved
ant colony algorithm is studied from two aspects: optimal path
solving and dynamic programming. The experimental results
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show that the improved ant colony algorithm can solve both
the optimal path and the dynamic programming.

Good performance.
Ant colony algorithm (ACO) [6-8] is one of the effective

algorithms for tourism route planning. In order to apply the
ant colony algorithm to the tourism route planning problem,
we need to improve the ant colony algorithm, so that the im-
proved ant colony algorithm can obtain the optimal solution in
the shortest possible time. The quality of ant colony algorithm
for tourism route planning depends mainly on the path selec-
tion strategy, pheromone updating rules and the setting of rel-
evant parameters. The improvement of ant colony algorithm
mainly focuses on these three aspects. For the improvement
of path selection strategy, aiming at the disadvantage that ant
colony algorithm is easy to fall into local optimal solution, it
can help ant colony algorithm jump out of the local optimal
solution by improving the probability of path selection, local
search and other strategies, so as to improve the quality of
solution [9-12]. For the improvement of pheromone updat-
ing rules, the main focus is on the accumulation and feedback
of pheromones, how to make the pheromones on the optimal
path play a better role in guiding ants, while avoiding the in-
fluence of poor path pheromones on ants. For the setting of
relevant parameters, the different traveling salesman problem
can make the parameters of the algorithm solution more effec-
tive solution. At present, there is no good mathematical proof
for the setting of parameters to help determine the quality of
parameters. Generally, the range of parameters is determined
by experience, and then the size of parameters is dynamically
adjusted.

2. IMPROVEMENT STRATEGIES

2.1 Path selection probability

In ant colony algorithm, the probability of path selection of
ant k from city i to city j at Time t is pk

i, j :

pk
i, j =

{
τi, j

∂ηi, j
β∑

s∈allowedk
τi,s

∂ηi,s
β i f j ∈ allowedk

0 else
(1)

According to (1), we know there are mainly four parame-
ters determining the probability of path selection: pheromone
value τi, j , heuristic function ηi, j , information heuristic factor
α, and expectation heuristic factor β.

The heuristic function ηi, j (t) = 1/di, j , di, j represents the
length of edges (i, j). When the ant colony algorithm is ini-
tialized, we let the initial pheromone τi, j = τ0 for each edge
(i, j), where τ0 is constant.

This means that in the initial stage, the ants will have a
greater probability to choose the next city with a larger heuris-
tic function (shorter edge distance) to move, so that the global
pheromone updates after obtaining the initial solution will
make the probability of the ants moving in a fixed direction ex-
ceed the probability of moving in other directions, thus form-
ing a local maximum. In the middle and later stages, the size
of pheromone in the current optimal path will be significantly
different from that in other paths. At this time, ants will have a
greater probability to choose the path with larger pheromone,
which makes the algorithm stagnate.

In order to solve the above shortcomings, in the early stage,
we need to make the ants move more randomly and explore
more possibilities of solutions. At the same time, in the middle
and late stages of the algorithm, it is possible for ant colony al-
gorithm to jump out of the local optimum and find the optimal
solution. Here we achieve the above goal by introducing the
concept of random factor. The concrete determination pro-
cess of the random factor is as follows: Assuming that there
are three nodes in the next hop of a node, the calculation of
probability passing formula (3.1) of the three nodes is 0.2, 0.3
and 0.5, respectively. According to ant colony algorithm, the
node with a probability of 0.5 is chosen as the node of the
next hop. This paper carries out the determination through
the random factor. The first node is selected in the range of
(0,0.2), the second node is selected in the range of (0.2,0.5),
and the second node is selected in the range of (0,0.2).

The third node is selected in the range of (0.5,1). By judging
the random factors, ants can choose other paths. The principle
is to ensure that most ants choose their path according to the
normal probability of path selection, but a small number of
ants will randomly jump out of the original intrinsic path to
choose a new path, which makes ants choose the next city and
reduce the probability of going to the relatively short path.
In the early stage of the algorithm, it reduces the sensitivity
of ants to path length; in the middle and late stage of the
algorithm, it reduces the sensitivity of ants to pheromones,
avoids the influence of pheromones on ants, thus increasing
the probability of jumping out of the local optimal solution.

2.2 Local search

The optimal solution path diagram and local optimal solution
path diagram of Oliver30 are shown in Figure 1. Figure 2
shows a partial region of the Oliver30 optimal solution path
map and the local optimal solution path map. Analysis and
comparison Figure 2.2 (a) and (b) can be seen that point A is
closer to point B and farther from point C. Once the amount
of pheromone on path AB accumulates, then ants will select
edge AB instead of side AC, which leads to the inability to
obtain an optimal solution. Analysis of the comparison Figure
2.2 (c) and (d) can be seen that the optimal path is ABC, and
the local optimal path is BAC. It can also be seen from the
figure that the length of AC is less than the length of BC, so
in the initial stage, the ant at point C will select point A as the
next city. With the accumulation of pheromones, more ants
choose the path CAB. Form a local optimal solution.

Based on the above analysis, we consider a local search
method to improve the quality of the ant colony algorithm.
Using 2-opt to optimize the optimal path for each cycle, and
exchange the adjacent points of the optimal solution of the
next cycle, a new solution can be obtained, if the new solution
obtained is better than the optimal solution of the current cycle.
, then replace the optimal solution of the current cycle. Taking
the above example, the local optimal solution path sequence in
Figure 2.2(d) is BAC. By 2-opt, the order of exchange points B
and A is obtained, ABC is obtained, and then the total length of
the path before and after the exchange is compared. The result
is better than the current solution result, so that the exchanged
path is recorded as the optimal path of the current cycle.
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2.3 Pheromone updating rules

In the ant colony algorithm, after each cycle, the global
pheromone update utilizes information about the path of all
ants. Such an update method means that the pheromone is
updated on the optimal path, and the poor path is also up-
dated in the pheromone. Such an update method does not
distinguish between high-quality solutions and inferior qual-
ity solutions. The accumulation of pheromones on the path of
high-quality solutions weakens the guiding role of ants, and
the accumulation of pheromones on the path of inferior solu-
tions can mislead ants, which is easy. This means solving the
local optimal solution.

This paper considers only using the optimal path to update
the pheromone.

τi, j =
{ Q

Lbest
i f edge (i, j) is on the optimal path

0 else
(2)

At the same time, we should consider the influence of
pheromones on the algorithm. Too much pheromone on the
path leads to an increase in the probability of ants choosing
this path, while too little pheromone on the path leads ants
to ignore the existence of this path when choosing the path,
which may lead to the algorithm falling into local optimum.
Based on the above analysis, we consider setting threshold
for pheromones, which can effectively avoid the occurrence
of too large or too small pheromones on the path, and control
the positive feedback of pheromones.

τi, j (t) ∈ τmin, τmax (3)

In order to prevent the influence of the optimal path from
being too large, we consider not only volatilizing the orig-
inal pheromone on the path, but also volatilizing the new
pheromone. The purpose of this is also to avoid the exces-
sive increase or decrease of the size of the pheromone on the
path.

τi, j (t + 1) = (1 − ρ)τi, j (t) + ρ�τi, j (t) (4)

2.4 Algorithmic solution process

When the ant chooses the next city, it calculates the current
path length of ant k immediately, compares the current path
length with the current optimal path length. If the current
optimal path length exceeds the current optimal path length,
the search of ant K stops, which can reduce the solving time
of the algorithm.

Set a sign Y to determine whether the optimal solution is
updated in this cycle. If it is not updated, there is no need
to repeat the calculation of the optimal solution that has been
searched locally, which also reduces the solving time of the
algorithm to a certain extent.

The termination condition of ant colony algorithm is Nc ≥
Nmax. In fact, it is difficult to get the Nmax, If the Nmax setting
is too small, the algorithm has not yet been searched; if the
setting is too large, the search is completed after an invalid
cycle, which increases the algorithm’s solving time. In this
paper, the cyclic sign C is set. If the current optimal solution
Lbest is unchanged for 10 consecutive times, it is considered
that the current cycle has been completed and the cycle ends.

2.5 Parameter selection

The setting of parameters has a great influence on the ant
colony algorithm to solve the tourism route planning, so it
is necessary to determine reasonable parameters for the ant
colony algorithm. When determining the parameters, consid-
ering the importance of the parameters to the algorithm, we
first determine the parameters that have great influence, and
then determine the parameters that have little influence.

By Ref [13-14], heuristic factor α, expected heuristic fac-
tor β and pheromone volatilization coefficient ρ have greater
influence, while the influence of ant colony number m and
pheromone intensity Q is relatively small.

(1) Heuristic factor α and expectation heuristic factor β

The heuristic factor reflects the guidance function of
pheromone on ant colony. The larger the heuristic factor α

is, the greater the influence of pheromone on ant selection
path, the more likely the ant will choose the optimal path be-
fore. When the heuristic factor α is too large, the convergence
of the algorithm will be accelerated and the phenomenon of
stagnation or prematurity will come about. When the heuristic
factor α is too small, the ants are less sensitive to pheromones
when choosing the path, and the ants search is more random,
thus increasing the consumption time of the algorithm.

Expectation heuristic factor β reflects the guidance of path
information to the ant colony. If the expected heuristic factor
β is too large, the ant will choose the shortest path first, which
increases the possibility of local optimal solution; if the ex-
pected heuristic factor β is too small, the ant will choose the
path more randomly, thus increasing the time consumption of
the algorithm.

Heuristic factor α and expected heuristic factor β affect the
probability ρk

i, j of path selection together. Therefore, when
determining the parameters, we must consider the influence
of the combination of the two parameters on the algorithm.

In order to select the appropriate heuristic factor α and ex-
pected heuristic factor β, we use Oliver-30 as test data. The de-
fault values of parameters are pheromone intensity Q = 100,
pheromone Volatilization Coefficient ρ = 0.3, the maximum
number of iterations Nc−max = 100, ant number m = 30, and
the combination of heuristic factor α and β expected heuristic
factor is (α, β) ∈ {(1, 3), (1, 4), (1, 5), (2, 3), (3, 4), (2, 5)}.
The involves solving each group of combinations 10 times and
getting the mean value. The results are shown in Table 1.

(2) Pheromone volatilization coefficient

Pheromone Volatilization Coefficient ρ and pheromone
residue coefficient 1 − ρ mainly affect the change of
pheromone size. If the pheromone Volatilization Coefficient
ρ is larger, it will make the pheromone on the path increase
or decrease rapidly. It is the ants that cluster together when
choosing the next path, so that the algorithm falls into the
local optimal solution. If the pheromone volatilization coef-
ficient is smaller, the pheromone on the path changes slowly,
and the guidance effect on ants is not obvious. The algo-
rithm is prone to stagnation. In order to select the appropriate
pheromone Volatilization Coefficient ρ, we use Oliver 30 as
the test data. The default parameters are information heuris-
tic factor α = 1, expected heuristic factor β = 4, pheromone
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(a)Optimal solution path map (b) Local Optimal Solution Path1 (c) Local Optimal Solution Path2 

Figure 1 Optimal and Local Optimal Path Diagrams of Oliver 30.

 

(a)Partial Regions of Optimal Solution Path (b)Partial region of local optimal solution path 1 

 
(c)Partial Regions of Optimal Solution Path (d)Partial region of local optimal solution path 2 

Figure 2 Partial Areas of Oliver 30 Optimal Solution Path Graph and Local Optimal Solution Path Graph.

Table 1 The relationship between heuristic factor α and expected heuristic factor β and average path length.

(α, β) (1, 3) (1, 4) (1, 5) (2, 3) (3, 4) (2, 5)
average path length 424.28 424.15 424.24 424.41 424.27 424.52

intensity Q = 100, and the maximum number of iterations of
the algorithm Nc−max = 100, the number of ants m = 30. The
volatilization coefficients of pheromone intensity pheromone
ρ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} are selected to
solve 10 times and average the results are shown in Table 2.

Table 2 shows that the average path length is the shortest
when the Volatilization Coefficient of pheromone is ρ = 0.3.

In the process of pheromone renewal, pheromone
Volatilization Coefficient ρ is very important. In most algo-
rithms, pheromone Volatilization Coefficient ρ is usually set
as a constant coefficient. In the initial stage of the algorithm,
we hope that the volatilization coefficient ρ of pheromone is
smaller. In order to avoid the excessive increase or decrease
of pheromones in the path, the volatilization coefficient ρ of

pheromones should be increased in the middle and later stages,
so as to speed up the search. Based on the above considera-
tions, our pheromone Volatilization Coefficientρ is first linked
to the number of cycles, and the pheromone Volatilization Co-
efficient ρ is

ρ =
⎧⎨
⎩

0.2Nc ∈ 0, 0.35Nc−max
0.3Nc ∈ 0.35Nc−max, 0.7Nc−max
0.4Nc ∈ 0.7Nc−max, Nc−max

(5)

(3) Ant colony number m

When the number of ant colony m is small, the improved ant
colony algorithm can get fewer path results each time, so it
needs more cycles to find the optimal path. When the number
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Table 2 The relationship between pheromone Volatilization Coefficient ρ and average path length.

(ρ) 0.1 0.2 0.3 0.4 0.5 0.6
average path length 425.21 424.17 424.23 423.45 423.76 424.21

of ant colony is large, the operation time of the algorithm itself
will increase, so we should consider choosing an appropriate
number of ants. In order to select the appropriate ant colony
number m, we use Oliver 30 as the test data. The default
parameters are information heuristic factor α = 1, expected
heuristic factor β = 4, pheromone volatilization coefficient
ρ = 0.3, the maximum number of iterations Nc−max = 100,
pheromone Q = 100, and m = {5, 10, 15, 20, 25, 30, 35, 40}
to solve 10 times and average. The results are shown in Table
3.

As can be seen from Table 3, when the number of ants m is
25, the average path length is the shortest. Refs [15-16] show
that it is reasonable to consider when the number of ants m is
equal to or slightly less than the number of cities n.

(4) Pheromone intensity Q

The function of pheromone intensity Q is to reflect the feed-
back quantity of pheromone. The larger the pheromone inten-
sity Q is, the larger the change amount of pheromone on the
path is. In order to select the appropriate pheromone intensity
Q, we use Oliver 30 as test data. The default values of parame-
ters are information heuristic factor α = 1, expected heuristic
factor β = 4, pheromone volatilization coefficient ρ = 0.3,
maximum iteration number Nc−max = 100, ant number
m = 25, and pheromone intensity Q = {1, 10, 100, 1000},
solve 10 times and get the mean value, the result is shown in
Table 4.

As can be seen from Table 4, when the pheromone inten-
sity Q = 100, there is an optimal solution, and other cases
fall into the same local optimal solution. Ref [13] shows that
pheromone intensity Q has little influence on the algorithm,
but in small-scale traveling salesman problem, pheromone in-
tensity Q = 100 is generally assumed/

3. IMPROVEMENT OF ANT COLONY
ALGORITHMS TO REALIZE THE
STEPS AND PROCEDURES OF TRAV-
ELING SALESMAN PROBLEM

The steps of improving ant colony algorithm to realize trav-
eling salesman problem are as follows:

Step 1: Initialization of parameters. Let the number of cycles
Nc = 0, set the maximum number of cycles Nc−max , clear
taboo table tabuK . Let the initial pheromone τi, j (0) = τmax
for each edge (i, j) and the increment �τi, j (0) = 0 for the
initial time pheromone.

Step 2: Number of cycles Nc = Nc + 1;

Step 3: Place m ants in n cities, and then add the city where
ant k is located to the taboo table tabuk of ant k.

Step 4: Number of ants K = 1;

Step 5: Ant k calculates the probability of path selection
pk

i, j (t) according to (1), decides to move to the next city j ac-
cording to random factors, and then adds j to the table tabuk

of Antk, calculates the current path length Lk (k = 1, 2, . . .)

of Ant k. If the current path length Lk > Lbest , the search of
Ant k stops.

Step 6: The number of ants K = K + 1;

Step 7: If K ≥ m is satisfied, step 5 is executed; otherwise,
step 8 is executed.

Step 8: Calculate the path length Lk of each ant and record
the current optimal solution Lbest . If the optimal solution is
updated, the update mark Y = 1 and the cycle mark C =
C + 1; otherwise, the update mark Y = 0 and the cycle mark
C = 0;

Step 9: If the update flag Y = 1, the current optimal solution
is searched locally to determine whether the optimal solution
Lbest needs to be updated.

Step 10: Update the path pheromone according to formula (2)
and formula (4). After updating, determine the pheromone a
of each side (i, j), which is larger than τmax and amend to
τmax.

Less than τmin is amended to τmin.

Step 11: If Nc ≥ Nc−max or C ≥ 10 is satisfied, step 12 is
executed; otherwise, the table tabuk is emptied and step 2 is
executed.

Step 12: Output the shortest path. The process ends here.

4. PERFORMANCE SIMULATION ANAL-
YSIS

4.1 Experimental Environment and Program

The test environment of this chapter’s simulation experi-
ment is: Core i5-4210M 2.60GHz, 4GB RAM, Win7, Mat-
lab.R2010b.

In order to verify the search accuracy and solution time
of this algorithm, the hybrid algorithm of the proposed al-
gorithm and the ant colony algorithm [37] and the particle
swarm ant colony algorithm [5] are applied to solve the trav-
eling salesman problem respectively. Oliver 30 problem and
eil51 problem are selected as examples. The three algorithms
were tested 10 times for each case, and the results of each
solution were recorded. The parameters of the simulation are
shown in Table 5.

4.2 Search accuracy

Comparing the optimal solution of the algorithm and the ant
colony algorithm in the literature [37], we can see that the
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Table 3 The relationship between Ant colony number m and average path length.

Ant number 5 10 15 20 25 30
average path length 425.59 425.15 424.53 424.17 424.21 424.18

Table 4 The relationship between Pheromone intensity Q and average path length.

Q 1 10 100 1000 10000 100000
average path length 424.26 424.23 424.22 424.24 424.25 424.23

Table 5 Arithmetic Parameter Settings.

Parameter name parameter value
information heuristic factor α 1

expected heuristic factor β 4
maximum number of iterations Nc−max 100

pheromone intensity Q 100
ant number m 25

algorithm in this paper can get the theoretical optimal solu-
tion, while the ant colony algorithm will fall into the local
optimal solution. At the same time, comparing the average
value and the average error, we can see that although the algo-
rithm in this paper cannot guarantee that every operation can
converge to the optimal solution, but only a small probability.
The rate falls into the local optimal solution. Comparing with
the PSO-ACO hybrid algorithm in literature [5], it can be seen
that the average error of PSO-ACO hybrid algorithm is less
than that of this algorithm,which shows that PSO-ACO hybrid
algorithm has better effect in the solving traveling salesman
problem. The reason is that the parameters are fixed in this al-
gorithm, and the hybrid PSO ant colony algorithm determines
the parameters dynamically by PSO. At the same time, com-
paring tables 3.6 and 3.7, we can see that the average error
of ant colony algorithm increases rapidly with the increase of
the number of cities, which shows that when the number of
cities increases, the possibility of ant colony algorithm falling
into the local optimal solution is greatly improved; and the
average error of this algorithm and particle swarm ant colony
hybrid algorithm is also somewhat higher when the number of
cities increases. This shows that the hybrid PSO and PSO ant
colony algorithm are effective in solving the traveling sales-
man problem.

Figures 3 and 4 are the optimal path diagrams obtained by
the improved ant colony algorithm for solving Oliver 30 and
eil51.

4.3 Solution time

By comparing the solution time of the proposed algorithm with
that of the Ref [5], the solution time of the proposed algorithm
is less than that of the particle swarm Ant Colony Hybrid
algorithm. The reason is that the parameters of the proposed

algorithm are fixed, and the parameters of the particle swarm
ant colony hybrid algorithm are determined dynamically by
the particle swarm algorithm, so the search of the proposed
algorithm is carried out. The accuracy is slightly lower than
that of PSO Ant Colony Hybrid algorithm, but the solution
time is faster. Comparing the search accuracy and the solution
time, the algorithm proposed in this paper is suited to solving
the actual travel route planning problem.

Figure 3 Optimal Path Map of Oliver 30.

Figure 4 Optimal Path Map of eil51.
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5. CONCLUSIONS

In this chapter, a traveling salesman problem based on an
improved ant colony algorithm is proposed. On the basis
of ant colony algorithm, the probability of path selection is
improved by random factors; the optimal path is searched
locally after a cycle is completed; the pheromone on the
optimal path is updated only, and the threshold of pheromone
is set at the same time; the solving process of the algorithm is
optimized; and the reasonable parameters of the algorithm are
determined. Through the performance simulation analysis,
compared with the particle swarm optimization (PSO) ant
colony algorithm, the algorithm in this paper has some
shortcomings in search accuracy, but the solution speed is
faster, which has a better practical value for solving the
tourism route planning problem.
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