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Iterative learning control techniques are suitable for systems or devices that run over a limited time interval repeatedly. These include
manipulators, disk drives, and inverter circuits. Under the premise that the initial error is zero, the tracking error can be zero
everywhere. This applies to the whole operation interval after several iterations. In practical applications however, the initial error is
zero, which is difficult to achieve. In order to widen the application scope of iterative learning control technology in practical industrial
applications, it is necessary to study the suitable iterative learning control method under the condition of non-zero initial error. In this
paper, an iterative learning control (ILC) method for initial correction of state-constrained reference signals for nonparametric a class
of generalized distributed parameter systems is proposed. This method is suitable for the case of a non-zero initial error. By tracking
the zero error of the system state to the corrected reference signal in the whole operation interval, the zero error tracking of the system
state to the reference signal is obtained. According to the characteristics of generalized distributed parameter system, this paper uses
the principle of singular value decomposition. First, the singular value decomposition of the generalized distributed parameter system
is carried out. Secondly, an iterative learning PD-type learning law with correction factor is designed. Then its convergence is proved
theoretically and strictly proved by Bell-Grown theory. The convergence condition is given. Finally, the algorithm is simulated by
numerical simulation. The simulation results show that the algorithm is effective.
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1. INTRODUCTION

Iterative learning control (ILC) is an advanced intelligent al-
gorithm, and has a strong engineering background. It was
proposed by Arimoto[1-2] in 1984. So far, more and more
people have applied this algorithm to the control of repetitive
motion in the last three decades. At present, iterative learning
control has always been a research hotspot [3-8].

The initial learning control - Iterative Learning Control
(ILC) was initiated by Japanese scholars in 1978. Unlike
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other control methods starting from linear controlled objects,
iterative learning control takes the nonlinear system as the re-
search object, and the control task of output full tracking is
implemented on the finite interval [0,T]. Here perfect tracking
refers to the output of the system from start to finish, whether
it is transient or steady state and is consistent with the tar-
get track. Obviously, the starting point of iterative learning
control is higher than other control methods. From the de-
velopment history of 20 years, the starting point is too high
and there are two disadvantages: 1) the lack of development
space and 2) difficulty of integration with mainstream control
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methods.
In fact, as long as the task is repeatable, or the system in-

terference is periodic, ILC can be used to solve the actual
problem. It has been developed from the generation of itera-
tive learning control methods for more than 20 years. It has
developed into a new development direction in the field of in-
telligent control. Its research has nonlinear, strong coupling,
difficult modeling and high-precision trajectory control. This
a very important question for research to resolve.

Iterative learning control is applied to controlled systems
with repetitive motion properties, and its goal is to achieve
full tracking tasks on finite intervals. It tries to control the
controlled system and corrects the undesired control signal
with the deviation of the output signal from the given target,
so that the tracking performance of the system can be im-
proved. The study of iterative learning control is very impor-
tant for dynamic systems with strong nonlinear coupling, high
positional repeatability, difficult modeling and high-precision
trajectory tracking control requirements. Its form is

Up+1(t) = Up(t) + K ∗ E p

where Up(t) is the input to the system during the pth repeti-
tion, E p is the tracking error during the pth repetition and K
is a design parameter representing operations on E p. Achiev-
ing perfect tracking through iteration is represented by the
mathematical requirement of convergence of the input signals
as p becomes large whilst the rate of this convergence repre-
sents the desirable practical need for the learning process to
be rapid. There is also the need to ensure good algorithm per-
formance even in the presence of uncertainty about the details
of process dynamics. The operation is crucial to achieving
design objectives and ranges from simple scalar gains to so-
phisticated optimization computations 33−36.

Singular distributed parameter systems are more widely
used than general distributed parameter systems39−46, such
as cable signal propagation, temperature distribution, heat ex-
change, heat flow, image processing, waveguide line, weak
decoupling system and voltage distribution in electromagnetic
coupling superconducting lines. They are essentially different
from the general distributed parameter systems. When under
disturbance, the structure of the system can change dramati-
cally. With the rapid development of science and technology,
the research on this system is becoming more and more im-
portant.

The research study of generalized distributed parameter
systems has only about ten years. In this period, the main
problems are related to three aspects:

1) Modeling problem

It can be seen from the forming process of singular dis-
tributed parameter system, the different research fields of
scholars constantly improve the mathematical models estab-
lished in understanding natural phenomena and natural laws
with mathematical tools in order to achieve a more realistic
description. How to establish a generalized distributed pa-
rameter system model for describing natural phenomena and
natural laws is still an important issue to be studied.

2) Problems of solutions for generalized distributed param-
eter systems

In 1988, Kaczorek[9-10] studied the solvability of discrete
models, and gave the necessary conditions for the existence of
solutions to singular distributed parameter systems; In 1990,
Lewis[11] studied the problem of solving singular distributed
parameters and gave the numerical solution. In 1991[12-13],
Lewis et al. used 2-D theory and Z transform and gave the
solution of the discrete model; the same year, Joder [14] gave
the numerical solution of the singular distributed parameter
system described by the singular parabolic equation. So far,
there is still a lot of work to be done about the solution of
generalized distributed parameter system. Obviously, this is
a complicated problem. Whether it can establish a new semi-
group theory to study the solution of singular distributed pa-
rameter system is a further research question that needs to be
examined.

3) Control issues

In 1993, Ge[15] has studied a class of singular distributed
parameter systems and gives sufficient conditions for the sta-
bilization of the system in Hilbert space. In 1994[14], he also
studied the pole assignment problem of the system. By us-
ing the generalized inverse of the bounded linear operator in
Hilbert space, a constructive expression of control volume was
given. Yinjun Zhang [16] discussed iterative learning control
for singular distributed parameter system with forgetting fac-
tor including a time-delay. In 1999, Yang and Liu[17] studied
the variable structure control design method of singular dis-
tributed parameter systems described by generalized parabolic
equations. In the same year, Yang[18] also made a robust sta-
bilization control design of the system by using the intrinsic
function method, but the design process is complicated and
the control needs to set an infinite number of switching equip-
ment. Liu Feng[19] discussed feedback stabilization for a
class of second order singular distributed parameter system
in Hibert space. It can be seen from the above literature that
Ge has laid a good foundation for the development of a gen-
eralized distributed parameter system. So GE proposed GE-
semigroup theory in 201335−38.

In the past few years, the theoretical research of SDPS
has attracted more and more attention from scholars. Cur-
rent research on SDPS mainly focuses on two aspects. In
an expression and characteristic considering the solution, for
example, literature [17] shows the solution of a coupled hy-
perbolic partial differential equation with a singular matrix
coefficient from the Fourier method. In the literature [18,19],
we introduce the operator decomposition method and empa-
thy to discuss the solvability of homogeneous constant SDPS
in Banach space. The boundary value problem is concerned
with linear SDPS and [4]’s variables separation method and
matrix theory. On the other hand, it is a study of its control
problems, for example, in [20], the robust exponential stability
of uncertain SDPS under linear operator inequality is studied.
Based on the method of the generalized operator semigroup
theory and the function analysis method combined with the
mean residence time, the synthesis of SDPS in the Hilbert
space, including the feedback stability and the well posed
problem, is given some sufficient conditions in [21-23]. In
document [24], we study the sliding mode control scheme of
SDPS with perturbation using the intrinsic function method.
In document [25], a state feedback control method is proposed
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for parabolic SDPS, and the equivalent decomposition form
is given based on spectrum analysis. In short, SDPS’s con-
trol theory combines singular system theory with distributed
parameter system theory [26-28]. The ILC study of singular
systems and DPS is limited, and only some related results are
reported. Document [29] uses the Laplasse transform to de-
sign the P type ILC renewal law of linear non-uniform DPS
in frequency domain. The ILC scheme based on the charac-
teristic spectrum is considered for semi linear DPS, and the
Galerkins model and the characteristic spectrum theory are
applied to reduce the [30] model. In the literature [31,32],
we give the P algorithm with the convergence conditions of
the closed loop and open-loop uncertain linear DPS respec-
tively using the contraction mapping principle. [33] uses the
Frobenius norm to solve the ILC tracking problem of the fast
subsystem of the singular system with pulse behavior and the
requirements of the pulse controlled constraint. The PD type
ILC law of singular discrete systems is given by using singular
value decomposition transformation in [34-36]. However, ac-
cording to the author, there is no report on the ILC of parabolic
type SISO SDPS.

However, most of the existing research results about singu-
lar distributed parameter system just discussed the stabiliza-
tion and feedback control issues in Hilbert space, there is not
much literature on iterative learning control for GDPs.

Iterative learning control techniques are suitable for sys-
tems or devices that run repeatedly over a limited time inter-
val, such as manipulators, disk drives, and inverter circuits.
Under the premise that the initial error is zero, the tracking
error can be zero everywhere in the whole operation interval
after several iterations. However, in practical applications, the
initial error is zero. This is difficult to achieve. In order to
widen the application scope of iterative learning control tech-
nology in practical industrial applications, it is necessary to
study the suitable iterative learning control method under the
initial error condition of a non-zero value.

In this paper, an iterative learning control (ILC) method
for initial correction of state-constrained reference signals for
nonparametric uncertain systems is proposed. This method is
suitable for the case of non-zero initial error. By tracking the
zero error of the system state to the corrected reference signal
in the whole operation interval, the zero error tracking of the
system state to the reference signal is obtained.

In order to improve the robustness and security of the sys-
tem, a new iterative learning controller is adopted to constrain
the system state in each iteration. In this paper, the construc-
tion scheme of the modified reference signal, the design of
the controller and the convergence analysis of the closed-loop
system are given, and the effectiveness of the proposed control
method is verified by numerical simulation.

2. SOME DEFINITIONS[27-29]

A SDP system (relative the SLP system) is an infinite-
dimensional system in the state space. Therefore, such a sys-
tem is also called an infinite dimensional system. A typical
example is a system described by a partial differential equation
or a delayed differential equation.

Here are some general mathematical symbols used in this

paper. L2 (�) (or short in L2) represents a kind of � function
space consisted by all measureable functions and it is bounded,
satisfying u p = {∫

�
|u (x)|p dx

}1/p
< ∞ (1 ≤ p ≤ ∞).

L p (�) is Banach space, L2 (�) is Hilbert space. For the
dimensional vector u = (

uT
1 , uT

2 , · · · , uT
i

)
, where the norm

of definition is ‖u‖ =
(

n∑
i=1

u2
i

)1/2

. If ui (x) ∈ L2, i =
1, 2, · · · , n then Q (x) = (Q1 (x) , Q2 (x) , · · · , Qn (x)) ∈

Rn ∩ L2, and ‖Q‖L2 =
{∫

�

(
QT (x) Q (x)

)2
dx

}1/2

. For

the function f (x, t) � × [0, T ] → Rn, f (·, t) ∈ Rn ∩
L2, t ∈ [0, T ] define its

(
L2, λ

)
norm as follows ‖ f ‖(L2,λ) =

sup
0≤t≤T

{(‖ f ‖2
L2

)
e−λt

}
.

3. NEW PROBLEM STATEMENT

Consider the following nonlinear generalized distributed pa-
rameter system based on singular value decomposition.{

Ē ẋn(t) = Āxn(t) + f (t, xn(t)) + Bun(t)
ynk(t) = C(t)xnk(t)

(1)

where k is iterative times, xnk(t) ∈ R1, ynk(t) ∈ Rr ,
unk(t) ∈ Rm are state vector, output vector and control input
respectively. Ā ∈ Rm×l , B(t) ∈ Rl×m are constant matric,
and Ē ∈ R1×1 is singular matrix. f is a nonlinear mapping
vector with corresponding dimensions.

This paper will use the following assumptions:

(1) The nonlinear mapping vector f satisfies the Lipschitz
condition with interval t ∈ 0, T ⊥, the constant is k f ;

(2) The system is reachable, we can find arbitrary desired
control input und (t) corresponding to expected output
ynd (t).{

Ē ẋnd(t) = Āxnd(t) + f (t, xnd(t)) + Bund(t)
ynd(t) = C(t)xnd (t)

(2)

(3) When the system is running iteratively, the initial value
of the system should satisfy

xnk(0) = x0
n , k = 1, 2, 3, . . . (3)

For the system(1), the paper proposed the closed-loop
PD-type learning law

unk+1(t) = unk(t) + q(ėnk+1(t) + L(t)enk+1(t) + γ (t))
(4a)

where L(t) is learning gain, γ (t) is initial correction factor

γ (t) = e−Ltηg(t)(ynd (0) − Cx0
n ) (4b)

where
∫ g

0 ηg(s)dts = 1, when t ≥ h or t ≤ 0, ηg(t) = 0, g is
time regulator, and Ē + B̄(t)q(t)C(t) is reversible.
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Convergence analysis of systems with correction
factor

For the above assumptions 1,2 and 3, we will analyze the
convergence of the system.

The theorem 1. for the above assumptions 1–3, the system
will satisfy the convergence condition with the learning law
(4)

sup
t∈0,T

||I − B̃|| ≤ ε1 < 1 (5)

If all of the above hold as true, the output of the system ynk(t)
can converge to the expected output ynd(t) under the learning
control law (4) when k → ∞.

lim
n→∞ ynk(t) = ỹnk(t)

where ỹnd(t) = ynd + e−Lt(Cxn0 − ynd (0)),

ỹnd (t) =

⎧⎪⎨
⎪⎩

ynd (t) − e−Lt (ynd(0) − Cxn0)(
1 − ∫ t

0 ηg(s)ds
)

, t ∈ 0, g

ynd (t), t ∈ g, T

(6)

Proof. For the system described in Eq. 1, we give the initial
state x0

n when the control input of the system is ũnd (t), then
the ideal output trajectory of system is ỹnd(t).

We introduce the following remark.

∂ ũnk(t) = ũnd (t) − unk(t)

∂ x̃nk(t) = x̃nd(t) − xnk(t) ẽnk(t) = ynd(t) − ỹnd (t)

enk(t) = ẽnk(t) + e−Lt (ynd(0) − Cx0
n )

− e−Lt (ynd(0) − Cx0
n )

∫ t

0
ηg(s)ds

Then

enk+1(t) = ẽnk+1(t) + e−Lt(ynd(0) − Cx0
n )

− e−Lt (ynd(0) − Cx0
n )

∫ t

0
ηg(s)ds

So its derivative is

ėnk(t) = ˙̃enk(t) + e−Lt (ynd(0) − Cx0
n)(

1 −
∫ t

0
ηg(s)ds

)
− γ (t) (7)

ėnk+1(t) = ˙̃enk+1 + e−Lt (ynd(0) − Cx0
n )(

1 −
∫ t

0
ηg(s)ds

)
− γ (t) (8)

According to the learning law(4), we know

∂ ũnk+1(t) = ∂ ũnk(t) − q(ėnk+1(t) + L(t)enk+1(t) + γ (t))

= ∂ ũnk(t) − q( ˙̃enk+1(t) + e−Lt (ynd(0) − Cx0
n)(

1 −
∫ t

0
ηg(s)ds

)
− γ (t))

− q L(t)(ẽnk+1(t) + e−Lt (ynd(0) − Cx0
n )

− e−Lt (ynd(0) − Cx0
n)

∫ t

0
ηg(s)ds) − qη(t)

= ∂ ũnk(t) − q ˙̃enk+1(t) − q L(t)ẽnk+1(t)

= ∂ ũnk(t) − qC ˙̃xnk+1(t) − q L(t)∂ x̃nk+1(t)

(9)

Equation (1) is subtracted from equation (2) and deformation,
we can get

(Ē(t) + B̄(t)q(t)C(t)) ˙̃xnk+1(t)

= ( Ā(t) − B̄(t)q(t)L(t)C(t))∂ x̃nk (t)

+ f (xnd(t)) − f (xnk+1(t)) + B̄(t)∂ ũnk(t) (10)

According to the above conditions, (Ē(t) + Ē(t)q(t)C(t)) is
reversible.

(Ē(t) + B̄(t)q(t)C(t))−1 = p(t),

p(t)( Ā(t) − B̄(t)q(t)L(t)C(t)) = Ã(t),

p(t)B̃(t) = (̃t),

So the Eq. 10 can be transformed

˙̃xnk+1(t) = Ã(t)∂ x̃nk+1(t) + p(t)

( f (xnd(t) − f (xnk+1(t))) + B̃(t)∂ ũnk(t) (11)

Integrating (11) from 0 to t and using the initial condition, we
get

x̃nk+1(t) =
∫ t

0
Ã(t)∂ x̃nk+1(τ )dτ

+
∫ t

0
p(t)( f (xnd (τ )) − f (xnk+1(τ )))dτ

+
∫ t

0
B̃(t)∂ ũnk(τ )dτ (12)

Taking the norm of (12) yields

||x̃nk+1(t)|| ≤ (p + k f + a)

∫ t

0
||∂ x̃nk+1(τ )||dτ

+ b
∫ t

0
||∂ ũnk(τ )||dτ (13)

where supt∈0,T ||p(t)|| = p, supt∈0,T || Ã(t)|| = a,

supt∈0,T ||B̃(t)|| = b.
According to Bell-Grown formula yields

||x̃nk+1(t)|| ≤ b
∫ t

0
e(p+k f +a)(t−τ )||∂ ũnk(τ )||dτ (14)

142 Engineering Intelligent Systems



Y. ZHANG ET AL.

Introducing (11) to (9) yields

∂ ũnk+1(t) = (I − B̃(t))∂ ũnk(t)

− (q(t)L(t)C(t) + qC Ã)∂ x̃nk+1(t)

− p(t)( f (t, xnd (t)) − f (t, xnk+1(t)))(15)

Taking the norm of (15), we have

||∂ ũnk+1(t)|| ≤ ||(I − B̃(t))||||∂ ũnk(t)||
+ ||(q(t)L(t)C(t) + qC Ã)||||∂ x̃nk+1(t)||

+ ||p(t) + k f ||||∂ x̃nk+1(t)|| (16)

Remark
sup

t∈0,T
||(I − B̃(t))|| = ε,

sup
t∈0,T

||q(t)L(t)C(t) + qC Ã + pk f || = m1

So (16) can be rewritten

||∂ ũnk+1(t)|| ≤ ε||∂ ũnk(t)|| + m1||∂ x̃nk+1(t)|| (17)

Introducing (14) to (17) yields

||∂ ũnk+1(t)|| ≤ ε||∂ ũnk(t)||

+ m1b
∫ t

0
e(p+k f +a)(t−τ )||∂ ũnk(τ )||dτ (18)

When both sides of (18) are multiplied by e−λt we get

||∂ ũnk+1(t)||e−λt ≤ ε||∂ ũnk(t)||e−λt

+ m1b
∫ t

0
e(p+k f +a)(t−τ )e−λ(τ−t)

e−λt ||∂ ũnk(τ )||dτ (19)

According to the λ norm definition, and rearrange the (19) we
have

||∂ ũnk+1(t)||λ ≤
(

ε − m1b
1 − e p+k f +a−λT

p + k f + a − λ

)
||∂ ũnk(t)||λ

(20)

Remark
(
ε − m1b 1−e(p+k f +a−λ)T

p+k f +a−λ

)
= ε̂, if we choose the suf-

ficient λ, and because of ε ∈ 0, 1), then ε̂ ∈ 0, 1), so we know
that (20) is mapping of ||∂unk(t)||λ,
And we can obtain

lim
k→∞

||∂ ũnk(t)||λ = 0 (21)

The same can be obtained

lim
k→∞

||∂ ẽnk(t)||λ = 0 (22)

so

lim
k→∞

ynk(t) → ỹnd(t) (23)

QED.

4. SYSTEM NUMERICAL ANALYSIS

Consider the following limited nonlinear generalized dis-
tributed parameter systems with repetitive property.{

Ēxn(t) = Āxn(t) + f (t, xn(t)) + Bun(t)
ynk(t) = C(t)xnk(t)

where

E =
[

1 0
0 1

]
, Ā =

[
0 1

−2 −3

]

B =
[

0
1

]
, C = [0 1]

We give the desired trajectory yn1d(t) = 0.25t2 + sin 2t ,
yn2d (t) = 0.25t2 + e3t . The initial state of the system at each
iteration is xnk(0) = 0.5, the learning gain q = 1, L = 6.
the index function Gk = max0.4≤x≤5 |enk(t)| if defined. The
comparison of the simulation results of the first component
of the system is shown in figures 1 and 2. From the simula-
tion results, we can see that the convergence speed of the PD
learning algorithm with correction factor (MPD) proposed in
this section is better than that
of the ordinary PD learning algorithm. Figures 3 and 4 reflect
the tracking and Gk values of the second component system.

 

Figure 1 General PD learning law and Gk value under the learning control
(MPD) system with initial correction factor.

Figure 2 The output of the ordinary PD learning law and the MPD with the
20 iterations.

The above analysis and simulation results show that the
learning rate is obviously accelerated after adding the correc-
tion factor, and the learning law can guarantee convergence to
zero in finite time when adjusting the gain. That is to say, it
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can achieve complete consistent tracking in finite time domain.
This fully demonstrates the effectiveness of the algorithm.

Figure 3 Tracking error of general PD learning law and learning law with
modified factor when k=20.

Figure 4 General PD learning law and system output under the modified law
of learning when k=20.

From the above analysis, the system can still track the de-
sired trajectory when the parameters of the learning law with
correction factors change. This can be obtained in future
proofs.

5. CONCLUSIONS AND OUTLOOK

Starting from the principle of a class of nonlinear generalized
distribution parameters, the first and second components are
obtained on the basis of singular value decomposition. The
convergence of the system is proved theoretically.

In order to improve the robustness and security of the sys-
tem, a new type of PD controller with correction factor is
used to design the controller, which constrains the state of
the system during each iteration. In this paper, the construc-
tion scheme of the modified reference signal, the design of
the controller and the convergence analysis of the closed-loop
system are given, and the effectiveness of the proposed control
method is verified by numerical simulation.

At present, there is no relevant literature to discuss the it-
erative learning control problem of nonlinear generalized dis-
tributed parameter systems. The work done in this paper has

theoretical significance as well as practical value. We also
hope that our future research work will have some theoretical
guiding significance for the future.

Of course, our current work is still very limited, and future
research and discussion should focus on such aspects as time
delay.
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