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Electroencephalograph (EEG) signals received from different areas of the human brain were analyzed using a combination of theoretical
analysis, experimentation and simulation. The driving simulation experiment was designed, and an acquisition system was set up to
collect EEG signals when drivers in the experiment turned left, turned right, or proceeded straight within a specified time window. The
collected EEG signals were processed, through wavelet package transform and other signal processing methods, to extract their feature
parameters. The models, based on a Support Vector Machine (SVM) model optimized by Particle Swarm Optimization (PSO) and on a
Neural Network (NN), were built to recognize motorists’ driving intentions through the processed EEG signals. The recognized driving
intention with better recognition rate was transformed into corresponding instruction signal which can control the vehicle to achieve
automatic drive. The analysis and result shows that the recognition rate of the model based on SVM optimized by PSO increases to
73.5%, and that of the model based on NN achieves a better rate of 92.9%.

Keywords: Brain–Computer Interface (BCI); Driving Intention Recognition; Particle Swarm Optimization (PSO); Support Vector Ma-
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IH Kim et al. studied joint features based on the electroen-
cephalogram (EEG) to predict the driver’s intention when
braking.1 Zhang H. et al. used EEG changes to predict the
driver’s turn direction before reaching a road junction.2 Ste-
fan Haufe et al. proposed the use of EEG over EMG to quickly
predict the driver’s emergency braking intention.3 Welke S. et
al. used EEG to predict the driver’s intended actions.4 Ghe-
orghe L. et al. studied the time required to predict driving
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tasks through EEG.5 I.H. Kim et al. identified driver’s brak-
ing intention through the analysis of EEG data6. Ikenishi
T. et al. identified and judged the driver’s vertical behav-
ior characteristics7 and steering intention through the driver’s
EEG.8 Bi L. et al. proposed the use of brain signals instead
of four limbs to control vehicles.9 Tang T et al. proposed
the use of EEG signals to identify emergencies via the power
spectrum of 13 channels of EEG signals for calculation.10

The present study mainly used a wavelet package to analyze
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EEG data and the energy proportion of each waveform of the
brain as input parameters to the recognition model to identify
the driving intention. It then inputs the recognition results to
the vehicle CAN bus to achieve self-driving.

1. EXPERIMENTAL ANALYSIS

When the human brain is stimulated by external factors or
produces motion awareness, numerous nerve cells generate
weak electrical activity measuring several tens of millivolts.
The electrical activity of these nerve cells is transmitted to the
surface of the scalp to form brain waves, which are then re-
flected by some kind of rhythm and spatial distribution. These
characteristic signals are extracted through an instrumental
equipment acquisition system for detection, analysis, and pro-
cessing, and are then used to identify the behavioral intentions
that trigger EEG changes. Computer language is then utilized
to program the changes and convert human thinking activities
into command signals to drive external devices and enable the
human brain to control the external environment.

By placing a detection electrode on the scalp, EEG detects
human intention by detecting the activity of the brain through
the potential distribution of hundreds of millions of cerebral
cortical neurons populating the surface of the scalp.

1.1 Experiment objectives and methods

Ethics statement: The study was approved by the Institutional
Review Board of Qingdao University of Technology, China.
All participants provided written informed consent.

Experiment: The test driver tests the driver’s EEG signals
under a typical urban environment, such as turning left, turning
right, and proceeding straight ahead. The driver’s EEG signals
are tested through the EEG device g. USBamp, and the data
are stored and analyzed to extract EEG features. The feature
values are then identified by using a recognition model.

Experiment methods: Through a virtual simulation simulator,
a typical section of a city road was established. Ten drivers
used hardware devices including steering wheel, shift lever,
accelerator pedal and brake pedal to perform normal driving
operations under virtual simulation conditions. For testing
purposes, all drivers had an electrode cap with 16 electrodes
fitted to their heads. Each driver drove twice to test the 16
electrodes, taking a ten-minute break between tests. The EEG
signals data were saved.

Each driver’s EEG signals were tested by the EEG device
g.USBamp to analyze the driver’s intentions based on the data.

1.2 Allocation and Analysis of EEG Data

To test each driver’s EEG signal and obtain EEG data, each
intention sample was divided into three sections.

1© Some of the EEG data was used as training data. Specif-
ically, mainly the learning samples were used to train the
model, and then the model parameters were obtained. This
trained model was used to validate the model.

2© Some of the EEG data was used as verification data. This
part of the data was mainly used to validate the trained model.

3© Some of the EEG data was used as test data. The recog-
nition model described in the following sections was used to
identify and determine the driver’s driving intention.

2. EEG FEATURE EXTRACTION

There are four main types of EEG signals: θ -wave, α-wave,
β-wave, and γ -wave. The wavelet packet technique is used
to extract the characteristic parameters of these waveform
types. The basic idea of the wavelet packet is to decompose
the wavelet subspace in a multi-resolution analysis. Several
kinds of wavelet bases can be selected for classification. For
this study, a function with high classification efficiency was
selected as the wavelet basis function. Given that the graph of
db1 is similar to the EEG signal graph, the function db1 was
chosen as the wavelet basis function.

The wavelet packet decomposition node consists of θ-wave:
4–8 Hz, node 32; α-wave: 8–13Hz, node 33, 139; β-wave:
13–30 Hz, nodes 140, 70, 37, 77; γ -wave: 30–60 Hz, nodes
78, 9, 21, 45.

The seventh layer needs to be decomposed, while the points
that do not need to be broken down include 2, 9, 15, 17, 21,
33, 37, 45, 46, 70, 77, and 78.

Based on the energy characteristics of θ -wave, α-wave, β-
wave, and γ -wave in the EEG signals, during the driving
process of the driver, the energy of the four frequencies is
clearly extracted through wavelet packet decomposition. Fur-
thermore, the energy ratio of each waveform is used as an
input parameter and is then input into a recognition model to
identify the driving intention. The 16 channels of the wave-
form of the driver’s intention category, each waveform, each
wave energy, the ratio of each energy, and the tree diagram of
each wave are organized together using Matlab programming.
The characteristics of each factor are also displayed based on
the different needs and the characteristic values of the energy
are obtained. Using the F3 channel as an example, Figures
2, 3, and 4 illustrate the calculation of the left-turn intention
energy of each band.

The energy proportions of the four waveforms obtained are
used as input parameters, and the input recognition model is
employed to identify the driving intention.

3. PARTICLE SWARM OPTIMIZATION
SUPPORT VECTOR MACHINES AND
NEURAL NETWORK ANALYSIS

With the use of the support vector machine (SVM) model for
classification and identification, the penalty factor c and the
learning factor g are shown to have considerable influence on
the classification effect of the SVM. In the SVM model, the
determination on parameters of penalty factor c and learning
factor g is achieved through experience, which will inevitably
affect the recognition results and accuracy of the SVM model.
Therefore, particle swarm algorithm is used to find the optimal
value for the penalty factor c and the parameter g, and the
use of this algorithm to optimize the parameters of SVM can
improve its training efficiency.

In the process of particles updating themselves, the math-
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Figure 1 Equipment used for the experiment.

Figure 2 Energy ratio of each waveband when left-turning.

 
Figure 3 Energy ratio of each waveband when right-turning.

 

Figure 4 Energy ratio of each waveband when straight-driving.

ematical model that uses the particle swarm algorithm is as

follows:

V k+1
id = ωV k+1

id + c1r1(pk
id − Xk
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(1)

Xk+1
id = Xk
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In the formula, ω is the inertia weight, d = 1, 2, ...D;
i = 1, 2, ..., n; k is the current number of iterations; Vid is the
velocity of the particle; c1 and c2 are the acceleration factors;
and r1 and r2 are random numbers.

Wavelet packet decomposition is used for denoising and
reconstructing, and Matlab is used to obtain the energy distri-
bution of each band and the energy ratio of each band. These
11 parameters are utilized for the input parameter input iden-
tification model through the SVM model, which is optimized
by the particle swarm optimization algorithm, for training and
classification to identify the driver’s intentions.

Table 1 Results of driving intention recognition.

Type of driving Recognition
intention rate
Left-turning and Right-turning 73.53%
Left-turning and Straight-driving 66.67%
Right-turning and Straight-driving 68.57%

The weights and thresholds of the input and output layers
of the neural network are determined randomly, and greatly
influence the classification or prediction of neural networks.
The optimal weights and thresholds of the input and output
layers of the neural network are used to identify the driving
intention by using the neural network model with the optimal
weights and thresholds.

The neural network mainly consists of an input layer, an
implicit layer, and an output layer. The activation value of
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each neuron in the hidden layer is as follows:

sk =
p∑

j=1

vkj · b j − θk ( j = 1, 2, . . ., p) (3)

where w j i is the connection right from the input layer to the
hidden layer, and θ j is the threshold of the hidden layer unit.

The activation function uses the S-type function, which is
continuously differentiable and is closer to the signal output
form of biological neurons than other functions. The S-type
function is:

f (x) = 1

1 + exp(−x)
(4)

The activation value is substituted into the activation function
to obtain the output value of the hidden layer j element:

b j = f (s j ) = 1

1 + exp
(− ∑n

i=1 w j i · xi + θ j
) (5)

in which θ j is the threshold.
The activation value of the kth element of the output layer

is

sk =
p∑

j=1

vkj · b j − θk (6)

The actual output value of the kth unit of the output layer is
as follows:

yk = f (sk)(k = 1, 2, . . . , q) (7)

In the formula, �θ j = β · e j is the weight of the hidden
layer to the output layer, θk is the output layer unit threshold,
and f (x) is the S-type activation function.

Take the neural network recognition of the particle swarm
algorithm of the left-turn intentions of the left hemisphere
(16 channels) and the straight-ahead-driving intentions (left
hemisphere F1 channel) as an example. The recognition rate
of the left-turn intention test reached 92.9%. The training
recognition rate reached 85.1%, and the overall recognition
rate was 84.2%, as shown in Figures 8 and 9. For the neu-
ral network recognition of particle swarm optimization of the
left-hemisphere (16-channel) left-turn intentions and right-
turn intentions (left hemisphere F1 channel), the left-turn in-
tention and right-turn intention test recognition rates reached
85.7%, training recognition rates reached 76.7%, and the
overall recognition rate was 77.5%. For the left-hemisphere
(16-channel) right-turn intentions and straight-driving inten-
tions (left hemisphere F1 channel), the right-turn intention
and straight-driving intention test recognition rates reached
90.5%, training recognition rates reached 82.5%,and the over-
all recognition rate was 82.7%.

4. SELF-DRIVING ANALYSIS

Through the recognition of the driving intention of the par-
ticle swarm optimization algorithm’s SVM and the neural
network’s driving intention recognition based on the parti-
cle swarm algorithm, we conclude that the best recognition

 
Figure 5 Confusion chart of driving intention recognition of left-turning and
straight-driving.

 
Figure 6 ROC curve of driving intention recognition of left-turning and
straight-driving.

effect is the neural network’s driving intention recognition of
the particle swarm algorithm and the virtual obtained driver
The intention signal is converted into a command input to the
CAN bus control section of the vehicle to achieve self-driving
of the vehicle.

The EEG control of the machine is a process of signal recog-
nition. This process uses the processing of the microprocessor
to set the steering signal to either “0” or “1”and then send this
data to the execution system.

Through the neural network identified by the particle swarm
algorithm, the left-turn intention, right-turning intention, and
driving straight intention EEG signals are converted into cor-
responding commands and passed to the CAN control system
to realize the driver’s intention and achieve the purpose of
self-driving as shown in Figure 7.

In Figure 7, the human participation is set to be “node 1,”
and the exchange of information is completed through the
CAN controller. “Node 2,” “Node 3,” and “Node 4” can be
set respectively as a rotation angle sensor,a speed sensor, and a
distance sensor, while the other nodes are various sub-modules
in the vehicle system.

5. CONCLUSION

This study establishes an SVM driving intention recognition
model and uses the particle swarm optimization algorithm to
optimize the key parameters of the model, penalty factor c,
and kernel function g. The objective function of the SVM
recognition model is a fitness function. Parameters such as
extracted energy and energy ratio are used as the model’s input
parameters, and the recognition accuracy of driving intentions
according to left turn and right turn, straight-ahead driving
and left turn, straight-ahead driving and right turn can reach
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Figure 7 BCI and CAN-BUS system structure.

73.53%.
In this work, a neural network driving intention recognition

model is also established, and the particle swarm optimization
algorithm is employed to optimize the input layer weights and
thresholds, as well as output layer weights and thresholds of
the key parameters of the model. The accuracy rate identi-
fied by the neural network is taken as the fitness value. The
neural network identification model takes the characteristic
parameters of each band as input parameters. The recogni-
tion accuracy of driving intentions according to left turn and
right turn, straight-ahead driving and left turn, straight-ahead
driving and right turn can reach 92.9%.

The EEG signals collected through brain–computer inter-
face technology are processed and analyzed for EEG sig-
nals, and characteristic parameters are input to the recognition
model to identify them and increase the recognition rate. The
goals of this study are to provide both theoretical and practical
support for traffic safety in self-driving, to avoid traffic risks,
or to realize assisted driving.
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