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The unreasonable acceleration and deceleration of vehicles on urban roads at signalized intersections will result in extra fuel consumption. In order
to solve this problem, a genetic algorithm is used to analyze vehicle energy consumption at signalized intersections. A vehicle structure model is
constructed and dynamic analysis is carried out. A model of a signalized road intersection is established to ensure the validity and coverage of
a continuous signalized intersection scenario. In order to reduce the energy consumption, the vehicle operation control mode of the signalized
intersection is optimized and combined, in the vehicle energy consumption analysis model based on a genetic algorithm, the corresponding vehicle
speed curves under different operation levels or at different signalized intersections are calculated; the population size is 200, the probability of genetic
variation is 0.001, and the genetic algebra is 50. The optimal traction energy consumption of vehicles moving along the speed curve is calculated by
the optimization method of vehicle energy consumption based on a genetic algorithm. The results show that, compared with the weighted coefficient
analysis method, the vehicle running time and total fuel consumption at the signalized intersection optimized by this method are reduced by 5.7%
and 20.5% respectively. With this method, the fuel consumption of the optimized vehicle engine is lower than that of the weighted coefficient analysis
method by 5.33 g; hence, the analysis of the results of the proposed method shows that its performance is better in terms of its energy consumption
optimization.
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1. INTRODUCTION

With the continuous development of the economy in newly
industrialized countries, the demand for vehicles has become
more and more intense, which has spurred the automotive
industry to achieve amazing development, with the output
increasing year by year. At the end of 2015, China,
as the world’s largest vehicle producer and seller, had
manufactured 279 million vehicles, of which 172 million
were automobiles. At the same time, the global vehicle
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ownership reached 1.12 billion vehicles, and is predicted to
grow at aa annual rate of 20% (Boubaker et al. 2016, Liao
et al. 2018). This continuous increase in vehicle ownership
has brought many problems, one of the most significant being
the large number of pollutants, such as carbon dioxide (CO2),
carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides
(NOX) and particulate matter (PM) that are emitted by vehicles
(Chai et al. 2015). According to the data provided by the
U.S. Government’s Climate Change Professional Committee,
greenhouse gas emissions from the transportation sector
accounted for one third of the total emissions in the United
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Figure 1 Vehicle powertrain structure.

States in 2004, 80% of which came from passenger cars and
trucks in the road traffic system. Moreover, vehicles consume
massive amounts of non-renewable fossil fuels More than 50%
of China’s oil will be used for vehicle operation in the future,
and this is expected to greatly increase, thereby exacerbating
the global energy crisis. Furthermore, the great number of
vehicles on the roads produces traffic congestion and increases
the incidence of road accidents causing injuries and fatalities
(Gowri & Sivanandan 2015, Lai & Easa 2016). According to a
survey by the Texas Institute of Transportation Management,
Americans consumed 5.5 billion hours of driving time and 2.9
billion gallons of fuel in 2011 because of traffic congestion.

Given these global problems, the future will see increas-
ingly urgent calls for ways to address vehicle safety, energy
saving and environmental protection issues. Nowadays, there
are many reasons for the inefficiency of the traffic system
and the deterioration of the fuel economy of vehicles. The
unreasonable acceleration, deceleration and idling of vehicles
at signalized intersections cause congestion and excessive
fuel waste (Ren et al. 2016). Therefore, how to encourage
and help drivers to drive reasonably and economically is
an urgent problem. Scholars in Europe and the United
States began to pay attention to this issue in the 1990s, and
set up many driver-training programs in the early years to
help develop good driving habits. On this basis, further
research hopes to improve the fuel economy of vehicles by
controlling the workings of the internal combustion engine and
the transmission system, and optimizing the vehicle’s speed
trajectory.

Nowadays, start from the resume and the background of
the resume (Wang et al. 2015), the application of information
technology is being considered for vehicle control and even
the management of the whole traffic field. These studies
mainly involve information communication technology and
an intelligent control algorithm (Yan et al. 2016). ITS is based
on a wide range of traffic information to connect wired and
wireless communication technology with traffic systems and
vehicles, to ensure the green and safe driving of vehicles
while achieving comprehensive and efficient management
of the traffic system. In this way, the vehicles traveling on
roads with signalized intersections can obtain in advance

all the traffic information they need. This is done through
the technology of vehicle networking, such as the dynamic
timing of signalized lights and the motion information of
vehicles around them, which is of great significance for
the study of vehicle energy consumption optimization at
successive signalized intersections in cities. Therefore, this
paper uses a genetic algorithm to analyze a running vehicle’s
energy consumption at signalized intersections, and uses the
vehicle energy consumption analysis model based on a genetic
algorithm to calculate the corresponding vehicle running
speed curves at different operating levels or at different
signalized intersections. Using the optimization method of
vehicle energy consumption based on genetic algorithm, the
optimal traction fuel consumption of the vehicle running along
the speed curve is calculated, which ensures the driving safety
and reduces the fuel consumption of the vehicle at the signal
intersection.

2. MATERIALS AND METHODS

2.1 Construction of Vehicle Structure Model

In order to establish a general vehicle energy consumption
model, the vehicle structure shown in Figure 1 is used as the
research object.

Figure 1 depicts a typical parallel hybrid vehicle structure.
Its power assembly structure includes: internal combustion
engine, single motor, battery, transmission and main reducer
(Asaithambi & Anuroop 2016). The single motor can be used
as a motor when driving, and can also be used as a generator to
charge the battery. Referring to the control strategy adopted
in the existing Simulink model of hybrid electric vehicles, the
vehicle can be divided into three working states (parking state,
driving state and braking state). The specific working mode
is shown in Table 1.

The actual working conditions of vehicle energy consump-
tion analysis for HEV at a signalized intersection include
pure electric, economical charging, engine working alone,
hybrid driving, motor braking and hybrid braking (Moshiri
& Montufar 2017, Chai et al. 2015).
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Table 1 Hybrid electric vehicle working mode.

Parking condition Driving state Braking state

Shutdown Pure electric Motor braking
Idling Economic Charging Hybrid braking
Idle speed power
generation

The engine works alone -

- Hybrid drive -
- Forced charging -

The dynamic analysis of the hybrid electric vehicle with
this structure (Da et al. 2018) is carried out. The longitudinal
kinematics equation of the vehicle is:

mva = Ft − Fa − F f − Fs (1)

Among them, mv and a are the mass and acceleration of
the vehicle, Ft is the traction of the wheel, Fa is the running
air resistance, F f is the rolling resistance, Fs is the slope
resistance. The traction Ft is provided by the power system
of the hybrid electric vehicle and reaches the wheels at last.
The expressions for calculating other resistance are:

Fa = 0.5ρaCd Av2 (2)

F f = mg frcc cos θ (3)

Fs = mg sin θ (4)

In the formula, ρa , Cd and A are respectively air density,
air resistance coefficient and windward area; frcc is rolling
resistance coefficient; θ is current road gradient; v is current
longitudinal speed.

On the premise of considering only the primary rolling
resistance, taking into account only the longitudinal motion
of the vehicle and neglecting the slope factor, it is considered
that the vehicle is travelling on a long straight road. Hence
according to Bo et al. (2016), the relationship between the
powertrain is:

Tw =
(

0.5ρaCd Aω2
t R2

t + mg frcc + mvω̇w Rt

)
Rt (5)

Tw = (
Tmot + Teng

)
fdrive fgear ηtrans (6)

ωeng = ωmot = ωw fdrive fgear (7)

rio = Teng /
(
Teng + Tmot

)
(8)

In the formula, Tw is the wheel driving torque; ωmot and
ωeng are the motor and engine speed; Tmot and Teng are
the motor and engine output torque; fdrive, fgear and ηtrans
are the main reducer, transmission ratio and transmission
system mechanical efficiency respectively; rio is the torque
distribution coefficient, which represents the proportion of the
engine providing torque to the required torque.

2.2 Constructing Scene Model of Signal
Intersection

For the vehicle energy consumption analysis model of a HEV
signalized intersection, it is necessary to design a feasible road
scenario used by the research institute, taking into account

the main characteristics of the actual road scene (Hagiwara
et al. 2015). The main research objective is to determine
the energy consumption of vehicles running longitudinally at
signalized intersections. The structure and types of signalized
intersections need to be omitted. At the same time, the road
and traffic information are known through vehicle network
communication. Therefore, the specific simplification and
hypothesis of the road scene at signalized intersections are as
follows:

(1) The vehicle has been running in a straight line on a lane,
without turning or neglecting the effect of turning, and
continuously passes all the signal lights that need to be
passed.

(2) The phase of the signal lamp considers only the phase
of the red lamp and the phase of the green lamp, and the
signal lamp changes with time.

(3) The signalized intersection is simplified as a parking line,
ignoring the possible internal structure.

(4) It is considered that the intersection can be passed at the
moment when the signal is switched, so that each green
light phase constitutes a closed set.

(5) In the context of vehicle networking, it is assumed that the
timing and phase information of signal lights are known
and are non-time-varying.

Specific continuous signal intersection scenarios are shown in
Figure 2.

On the other hand, because the variable acceleration model
requires optimization in continuous space, it is necessary to
discretize first the whole road scene according to a certain
step size, and then consider that the vehicle is moving at a
uniform speed in each discrete small step, so that the solution
and optimization of the vehicle speed curve under the variable
acceleration model can be achieved (Boubaker et al. 2016).
The whole discrete process diagram is shown in Figure 3.

In Figure 3, vi is the final velocity of the i segment, so
v0 can be used to represent the initial velocity; ai and ti are
the acceleration and travel time of the i segment; ds is the
discrete step; si is the distance from the i signal lamp. Then
the kinematic relationship of the vehicle in the discrete step is
obtained as:

vi =
√

v2
i−1 + 2ai−1 · ds (9)

ti = 2ds

(vi + vi−1)
(10)
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Figure 3 Road scene discretization process graph.

Finally, based on the above discussion, in a reasonable
range, we use the random generation method to get the
required continuous signal road scene. The specific steps for
generating the signal intersection road scene are as follows:

(1) To determine the total length of the road Stotal, then
determine the number of signal intersections to be
generated n and randomly determine the length of each

signal section Li to meet
n∑

i=1
Li = Stotal.

(2) For each signal, the values in the green light timing
(αg, βg) are randomly selected, and the values in the red
light timing (α, β) are randomly selected (Yi & Bauer
2017).

(3) The phase of the signal lamp at the initial time, without
losing its generality (Lee & Choi 2016), can be randomly
selected in (−Gi − Ri , 0], i = 1, 2, · · · n, where Gi and
Ri are the green light and red light timing length of the i
signal lamp.

An example of a 2400 m intersection road scene with six
lights is given, as shown in Figure 4.

2.3 Vehicle Energy Consumption
Optimization Based on Genetic
Algorithms

2.3.1 Vehicle Energy Consumption Analysis Model
Based on Genetic Algorithms

In the analysis model of a vehicle’s running energy con-
sumption, if the command speed xi of intersection section
in the scene of signalized intersection is expressed by

{xi1, xi2, · · · , xik , · · · , xin}, and the speed of k of speed
change point is expressed by xik , the speed corresponding
to P1. In the algorithm, the value of each speed is in the
range of P1 to P5, and the resolution of the speed can be
set to 1 km h−1. The change point of command speed
is to divide the signal intersection into 20–40 equal points
according to the distance. The actual ATO speed curve and
traction energy consumption along the command speed curve
{xi1, xi2, · · · , xik , · · · , xin} will be obtained, so the problem
can be abstracted as a combinatorial optimization problem of
time and energy consumption (Tang et al. 2017):

X = {(x11, x12, · · · x1n) , (x21, x22, · · · x2n) , · · · ,

(xm1, xm2, · · · , xmn)} (11)

s.t. g1 (xi ) ≤ J (12)

g2 (xi ) ≤ T (13)

Among them: X is a set of vehicle command speed curves;
J is the maximum impact rate of vehicles; T is the maximum
running time of signalized intersection; gi(xi ) and g2(xi ) are
the maximum impact rate of vehicles running according to
xi and the running time of signalized intersection (Li et al.
2015).

Constraint Formula (12) indicates that when a vehicle runs
in accordance with the command speed curve xi , the speed
change of the vehicle needs to satisfy that the maximum
impact rate (the change rate of acceleration) of the vehicle
is not greater than the maximum J given by the vehicle. If
xi is expressed as {xi1, xi2, · · · xik , · · · , xin} and vk is set as
the speed corresponding to xik and dk is the line position
corresponding to xik , then the acceleration ak and time tk are:
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Figure 4 Example of a 2400 m and 6-signal intersection scene.

ak = v2
k+1 − v2

k

2 (dk+1 − dk)
(14)

tk = vk+1 − vk

ak
(15)

Constraint Formula (12) can be expressed as:

Jk = ak

tk
≤ 1 k ∈ {1, 2, · · · , n − 1} (16)

In the Formula: Jk is the impact rate of the vehicle at xik .
Constraint Formula (13) indicates that when a vehicle runs

in accordance with the command speed curve xi , the running
time at the intersection of vehicle signal lights is not more
than T . In this algorithm, the constraints are transformed
into speed curves corresponding to different running times,
and the optimal solutions corresponding to different running
times are recorded during the operation, that is, the minimum
energy consumption speed curves corresponding to different
running times.

2.3.2 Vehicle Energy Consumption Optimization
Method Based on Genetic Algorithms

Setting the population size to 200, the vehicle running speed
curve consists of the command speed of each line segment
of the vehicle at the signalized intersection (Wu & Zhang
2015). The command speed of a line segment is included
in each chromosome as a genetic factor. The individual
generated by each gene has a certain adaptability to the
environment. Through the selection of the fittest, the base with
high adaptability is obtained (Cao et al. 2016). The number
of genes in Formula (11) is the number of chromosomes. The
number of genes depends on the selection of command speed
change points in the algorithm; i.e. 20–40 equal points in
the algorithm for energy consumption optimization of vehicle
speed curve.

The probability of gene mutation is 0.001. In this algorithm,
genetic algebra is used as the termination condition. After 50
generations of testing, satisfactory results can be obtained.

The key to study the fitness function of the vehicle speed
curve is to calculate the energy consumption of the vehicle

running along the curve (Fu et al. 2016). If fi (xi ) is the
traction energy consumption of the vehicle running along the
command speed, the fitness function of xi is:

f (xi ) =
{

Cmax − f1(xi ) f1(xi ) < Cmax

0 else
(17)

Among them, Cmax is the normal number with a large
middle score, which means that if the energy consumption
of the vehicle in the test signal intersection is greater than
Cmax, its fitness is 0, and it will definitely be eliminated in the
next selection operation. Vehicle traction energy consumption
f1(xi ) is the result of traction force (Yang et al. 2017), which
integrates vehicle running resistance and line gradient factors.
Vehicles run according to command speed curve set X to get
the actual running curve set Y . yi is the actual running speed
curve corresponding to command speed xi . Vehicle traction
energy consumption corresponding to yi can be obtained by
simulation calculation.

Vehicle resistance can be decomposed into basic resistance
and additional resistance, namely:

F1(yi j ) = F2(yi j ) + F3(yi j ) (18)

Among them: F1(yi j ), F2(yi j ) and F3(yi j ) are the total
resistance, basic resistance and additional resistance of the
vehicle in yi j respectively; yi j is the position j of yi .

The force exerted on the gradient is obtained by the force
of gravity (Ma 2018). If w(yi j ) is the unit resistance of the
gradient on yi j , the total gradient resistance F4(yi j ) of the
vehicle is as follows:

F4(yi j ) = w(yi j )

1000000
Mg (19)

Among them: M is vehicle mass; g is gravity acceleration.
The vehicle’s target acceleration is determined by the

vehicle controller according to the current state of the vehicle,
and the actual force exerted on the vehicle is the way to achieve
the target acceleration. The actual force F5(yi j ) of the vehicle
in yi j is

F5(yi j ) = M(1 + β)a(yi j )

1000
(20)
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Table 2 Summary of simulation results of energy consumption optimization by different methods.

Distance
and
number
of lights
(m/Number)

Passage coeffi-
cient

Dispersion
coefficient

Time /s Overall fuel
consumption/g

1800 m/4 0.3911 25.56% 170.41/179.00 (-4.8%) 36.94/42.27 (-12.6%)
2000 m/7 0.2594 13.71% 157.94/149.44 (+5.7%) 40.53/49.68 (-18.4%)
2200 m/6 0.3301 15.91% 214.75/244.00 (-12.0%) 44.66/48.72 (-8.3%)
2300 m/7 0.2846 19.94% 195.70/190.55 (+2.7%) 58.91/73.56 (-19.9%)
2600 m/7 0.3306 18.41% 230.60/221.00 (+4.3%) 64.67/79.37 (-18.5%)
2700 m/7 0.342 13.44% 232.07/291.65 (-20.4%) 59.23/85.40 (-29.0%)
2700 m/8 0.2966 24.44% 253.76/278.00 (-8.7%) 70.24/95.59 (-26.5%)
2800 m/7 0.273 30.00% 281.54/288.00 (-2.2%) 85.73/90.84 (-5.6%)
2800 m/8 0.3297 16.79% 244.43/290.46 (-15.8%) 68.28/91.01 (-25.0%)

Among them: β is the vehicle rotating mass coefficient,
the value is related to the number of passengers. In this
simulation, the vehicle mass is taken as full-load, the vehicle
rotating mass coefficient β is taken as 1.08; a(yi j ) is the
instantaneous acceleration of the vehicle in yi j . When the
vehicle is accelerating, a(yi j ) > 0, when the vehicle is
decelerating, a(yi j ) < 0 (Liu et al. 2017).

Since F5(yi j ) is the combined force of traction, braking
force, resistance and slope resistance, then:

F5
(
yi j

) = F6
(
yi j

) + F7
(
yi j

) + F1
(
yi j

) + F4
(
yi j

)
(21)

Among them, F6(yi j ) and F7(yi j ) are the traction force and
braking force of vehicle in position yi j respectively.

If F5(yi j ) + F1(yi j ) + F4(yi j ) > 0, then the vehicle is in
the traction state, the traction force is:

F6
(
yi j

) = F5
(
yi j

) + F1
(
yi j

) + F4
(
yi j

)
(22)

If F5(yi j ) + F1(yi j ) + F4(yi j ) < 0, then the vehicle is in
braking state and the traction force is:

F7
(
yi j

) = −F5
(
yi j

) − F1
(
yi j

) − F4
(
yi j

)
(23)

If F5(yi j ) + F1(yi j ) + F4(yi j ) = 0, then the vehicle is
parked, traction and braking force are both 0.

The optimal traction energy consumption f1(xi ) of a
vehicle operating at the command speed xi according to
Formula (22) is as follows:

f1 (xi ) =
∫

F6
(
yi j

)
dyi j =

∫ [
F5

(
yi j

) + F1
(
yi j

)
+F4

(
yi j

)]
dyi j (24)

Among them, yi j is between the departure point L1 and the
parking point L2.

3. RESULTS

In order to verify the performance of this energy consumption
analysis method, several scenarios are randomly generated
and selected on the simulation platform to analyze the vehicle
energy consumption, such as when the engine is idling at the

signal intersection. The simulation results of this method and
weight coefficient analysis method are compared. The results
are shown in Table 2. The left side of time bar and total fuel
consumption column is the energy consumption optimization
result of this method, and the right side is the result of energy
consumption optimization by the weight coefficient analysis
method.

In Table 2, vehicle energy consumption is indicated by
fuel consumption. It can be seen from the table that in
scenarios comprising different distances and number of signal
lights, the time and total fuel consumption of vehicles at
signalized intersections are reduced by 5.7% and 20.5%
respectively when the energy consumption of vehicles at
signalized intersections is analyzed and optimized compared
with the method of weight coefficient analysis.

Next, the simulation results in Table 2 will be compared
and analyzed, using a road scenario where distance is 1800
m, and there are four signalized intersections. Figure 5 is a
comparison of displacement of running vehicles optimized by
two analytical methods.

From Figure 5, we can see that the method of weight
coefficient analysis is used to analyze the energy consumption
of vehicles at signalized intersections one by one. In order
to minimize the absolute acceleration at each section of the
road, the comparison results show a trend of two endpoints
passing through the intersection in the traffic time interval.
Displacement maps show that in order to pass successfully
through the first intersection, the moving vehicles under
the two methods have experienced an obvious acceleration
section. In the later signal intersection section, the vehicles
optimized by this method have accelerated ahead of time
because of the characteristics of global optimization,while the
vehicles optimized by weight coefficient analysis method have
passed through a large increase in the last signal intersection
section. Speed ensures passage through the intersection during
the green phase of the signal. The following two methods are
given to optimize the vehicle motion as shown in Figure 6.

As shown in Figure 6, corresponding to the shift in Figure 5,
the optimization result of this method accelerates ahead of
time after passing the second signal intersection to ensure
the smooth passage of the back signal intersection, while the
weight coefficient analysis method considers each intersection
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Figure 6 Vehicle speed and acceleration map of road scene at 1800 m, four signal intersections.
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Figure 7 Torque analysis coefficient and SOC chart of road scene at 1800 m, four signal intersections.

one by one, and maintains the low speed at both the second
and the third signal intersection, so that it has to be added at
the last signal intersection, this also gives the vehicle extra fuel
consumption and higher final speed. Figure 7 below shows
the results of energy management optimization of the two
methods.

From Figure 7, it can be seen that the energy optimization
of both methods keeps the initial and final state of the running
vehicle SOC (residual electricity) near 70%. Among them,
the method proposed in this paper concludes that the vehicle
engine participates in the two acceleration stages, in which the
initial stage is driven together, while the latter engine charges
the battery while the car is travelling, so that the SOC (residual
electricity) can be restored. The weight coefficient analysis
method is used to analyze SOC consumption in the initial
stage. Finally, the SOC rebounds when the engine continues
to work under both uniform and accelerated conditions.

Finally, the working conditions of the vehicle engine and
the corresponding fuel consumption obtained by different
methods are depicted in Figure 8.

Figure 8 shows that the fuel consumption of the two
engines increases rapidly after optimization. The greater
amount of engine power during the 50–110 s period makes

the fuel consumption increases faster than the weighted
coefficient analysis method, but the working time is short
and concentrated in the high-load area with higher efficiency.
The weighted coefficient analysis method makes the engine
work in the low-efficiency area for a long time. Hence,
the fuel consumption continues to increase, and is obviously
accelerated at the beginning of large acceleration in 150 s.
Finally, the maximum fuel consumption by the vehicle engine
optimized by weight coefficient analysis method is 42.27 g,
while the maximum fuel consumption by the vehicle engine
optimized by this method is 36.94 g. By comparison, it can
be seen that the fuel consumption of engine obtained by this
method is lower.

4. DISCUSSIONS

In the third part of the paper, the performance of vehicle
energy consumption analysis and optimization at signalized
intersections using a genetic algorithm is verified. The results
of the two methods are compared in terms of optimization
simulation, displacement, speed and acceleration, torque
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Figure 8 Engine power and fuel consumption charts for road scene at 1800 m, four signal intersections.

distribution coefficient and SOC, engine power and fuel
consumption. The results show that, in comparison, the
vehicle running time and total fuel consumption at the
signalized intersection optimized by this method are reduced
by 5.7% and 20.5% respectively. The vehicles optimized
by the two methods all experience an obvious acceleration
section. The vehicles optimized by this method accelerate
ahead of time, while the vehicles optimized by weight
coefficient analysis method have a greater acceleration at the
last signalized intersection section. The optimized vehicle
participates in the work of the engine in two acceleration
stages, in which the starting stage is driven jointly, while the
latter engine charges the battery while the vehicle is moving,
so that the SOC can be restored. The optimized vehicle
consumes the SOC in the initial stage by the weight coefficient
analysis method, and the SOC recovers when the engine
continues to charge under final constant speed and acceleration
conditions. The fuel consumption of the optimized vehicle
engine by weight coefficient analysis method is 42.27 g,
which is higher than that of the optimized vehicle engine
by this method (36.94 g). A series of experimental results
show that the energy consumption analysis and optimization
performance of this method is better. The main reason for

this result is that the genetic algorithm is used in the energy
consumption analysis of this method. According to the natural
evolution rules such as survival of the fittest, the global
optimization search calculation and problem solving are
carried out in complex space. Without restrictive assumptions,
the convergence to a local optimal solution is avoided. By
parallel calculation, the calculation speed is increased, and
the vehicle running along the speed curve at a signalized
intersection is obtained.

5. CONCLUSIONS

This paper uses a genetic algorithm to analyze vehicle running
energy consumption at signalized intersections, builds vehicle
structure model and scenario model of signalized intersec-
tions, uses energy consumption optimization algorithm based
on genetic algorithm to calculate vehicle running speed
curves at different operating levels or at different signalized
intersections, and uses energy consumption optimization
method based on genetic algorithm to calculate vehicle
running speed. The optimal traction energy consumption
of degree curve operation can achieve an accurate analysis
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and optimization of vehicle operation energy consumption
and greatly improve the vehicle’s energy saving. The vehicle
speed curves generated by this method and the optimal traction
energy consumption of the vehicle moving along the speed
curve offer valuable practical insights for engineering design.
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