
Eng Int Syst (2021) 4: 241–252
© 2021 CRL Publishing Ltd Engineering

Intelligent Systems

Federal Synergy Computing Model
Based on Network Interconnection
Hechuang Wang∗

School of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China

To solve the shortage problem of the computing power provided by a single machine or small cluster system in scientific research, we offer a
collaborative computing system for users. This system has massive operation ability. It introduces a scalable mixed collaborative computing
model. Through the internet and heterogeneous computing equipment, the system uses the task decomposition model. This system can solve
the research and development problem of the shortage of local computing power. To test the model, a subtask decomposition example is
used. The results of the example analysis show that the computing work can obtain the shortest computation time when the number of
calculation nodes is more than the number of subtasks; maximum calculation efficiency can be achieved when the number of the calculating
nodes approaches the number of subtasks. Through joint collaborative computing, the extensible mixed collaborative computing mode can
effectively solve the mass computing problem for the system with heterogeneous hardware and software. This paper provides the reference for
the system, which provides large scale computing power through the Internet and addresses the research problems due to the lack of computing
ability.

Keywords: Federal Computing, Task Decomposition, Task Scheduling, Data Communication

1. INTRODUCTION

Under the impetus of science and engineering applications,
many breakthroughs have been made in the computational
model with the support of the algorithms and architecture by
integrating in modern computing network technology [1–4].

High performance computing capacity through the model
provides a powerful foundation platform for the computing of
related areas. The simulations of various natural phenomena
have reached unprecedented accuracy by using these high
performance computing platforms [5], and the platform
provides a supercomputing ability to design new drugs
to combat emerging viruses and other diseases [6]. Large
systems (such as cosmology) and small systems (such as
cell research) are hungry for computing power, this is
the driving force behind researching computing models,
improving system computing power and building large-scale
computing platforms.

∗Corresponding author Email: WangHC123SL@163.com

Computing hardware stacks and parallel system devel-
opment can provide general-purpose large scale parallel
computing capabilities; however, expensive computing hard-
ware and complex system design are difficult to afford
in a small scientific computing system. The objective of
this research is to design a cost-effective platform for
a small scientific computing system in order to provide
super computing power. This will solve the issue of
insufficient computing power and the platform will be
easy to expand and develop with parallel computing sys-
tems [7].

This research is devoted to the development of a scalable
hybrid federal computing model for building cost-effective,
scalable high energy computing systems, in order to provide
a computing method for the scientific field, such as the
classified system or the special scenario that cannot be
applied in other ways such as cloud computing. The research
focuses primarily on the construction of a system model that
is the core content and the key technology of the system
design.

vol 29 no 4 July 2021 241

FEDERAL SYNERGY COMPUTING MODEL BASED ON NETWORK INTERCONNECTION

Figure 1 The System Network Topology.

2. DESIGN OF THE SYSTEM
ARCHITECTURE

2.1 Topology of the system network

Although network computing provides unprecedented com-
puting power for scientific computing, it is difficult to
complete large-scale computing due to the lack of scientific
research computing equipment and the special requirements in
certain fields that network computing cannot provide, such as
cloud computing. In these cases, a heterogeneous platform
must be built through simple redeploying and connecting
existing computing resources with a certain computing scale,
or a large amount of funds must be spent to build a private
computing platform with large computing power. Motivated
by this demand, this research designed a heterogeneous
scalable hybrid federal computing model based on network,
The overall network topology of the system is shown in
Figure 1.

In Fig. 1. the network topology diagram of the system,
LC1∼n are the local computing nodes, the number of which
depends on the size of the network IP address allocation pool.
Therefore, different types of network will provide a different
number of node accesses, and as a result this will constrain
the computing capacity of the computing system constructed
by them.

DBS provides a data storage system for the system; the
whole system can share this data source, with the help of this
node the system can complete the data sharing and publishing.
MS system is designated as the unique management server, all
the computing nodes and the access nodes must be registered
on this server. This server is responsible for the establishment
of tasks, task assignments and task scheduling, as it is the
central core server that is connected both to the intranet
and extranet, it builds a connection channel for RC and
LC. Through RC1∼n , a remote access client, the MS can
be established and asked for computing tasks, and one can

also download the COM component from the MS server to
join the system, and to accept the MS scheduling. MS,
DBS and LC1∼n are connected together through a switch
SW, which is responsible for assigning network addresses
to them in turn. In this way, LC and RC do not need the
same physical structure or software system, this can shield the
difference of the system structure and provide the capability
of heterogeneous collaborative computing through the upper
layer of software design [8].

2.2 Task Processing Flow

The remote device RC sends a request to the MS to initiate a
task, and the task is submitted in the form of a task description.
The design of the task description is shown in Reference [9],
and it introduces the concept of multitasking job processing
[10], the MS task design flow is shown in Figure 2:

Remote users access the MS via the Internet and submit an
application to MS. When the RC application logs in success-
fully, MS will register the RC identity on the server. The RC
will become a remote computing node of MS when it applies
for a task from MS. After the application is approved by the
server, MS will then issue a general computing task for it. If
the RC submits a request to the MS application for computing
tasks, MS will review the calculation of the RC application,
if the application is accepted, establishment of RC computing
tasks will be successful, if it is not accepted, establishment of
the task will fail. If the RC does not have a task description,
then the job description will be written before loading the job
description, the MS task will then be scheduled according to
the task description. If the access node of the MS is 0 or the idle
node is 0, the system does not have any available resources to
perform the task, so the task will be queued, otherwise the task
will be assigned to perform. After the end of the computing,
the RCs report to the system that the task has been completed,
and release the system resources.

242 Engineering Intelligent Systems

H. WANG

Figure 2 Task Processing Flow Chart.

According to the needs of the application, the system is
constructed by hybrid system architecture. The MapReduce
computing model is introduced in the process of assigning
tasks to each computing node [11]. The system task specifica-
tion describes a subset of tasks that split a large problem into
a number of small problems, and then perform the tasks on
each node in the cluster computing node, otherwise known
as a Map process. At the end of the Map process, each
node in the cluster will compile, execute and solve the tasks
according to the task specification. After the completion of
the task, there will be a reduce process, this process will
bring all the computing output results of the decomposition
of the subtasks together, and send it to the MS and DBS
nodes. Whether it is a Reduce process that brings the results
together after the system is completed, or the Map process that
is executed when the system is initialized, Subtask execution
nodes need to communicate with the distribution server
for the necessary task descriptions, the task specification
which describes the data sources, the remote storage of
intermediate key/value results and to submit the results of
the implementation. Therefore, it is necessary to provide a
large data query and analysis model for the data nodes, and
provide remote data access APIs to capture the data of the
system design. In order to avoid the accumulation and loss of
data, it is necessary to introduce a method to store the new
data of the system for when the computing nodes need to save
the new generated data in a certain time window. This will

ensure different nodes computing performance that is bound
to different servers. In order to solve the problem of large
data query and analysis, there is a need to calculate the cluster
configuration of a small memory computing cluster. There
is also a need to introduce a memory computing model to
improve the computing performance of a variety of computing
models to deal with large data, this model can achieve high
real-time data query and analysis rates.

3. SUBTASK DECOMPOSITION MODEL
AND TASK DESCRIPTION

The system model using the subtask decomposition method
is designed according to the reference [12].

Given the computing task T , when the complexity of the
task O(T) is greater than the given threshold value, continue
to resolve the decomposition Subtask Ti of task T , Ti can be
described by using the task tree view description language
(TTVDL) based on XML. A list of tasks is created on the
basis of task representation, computing task requests from
computing node N , and establishing the thread of computing
nodes. The leaf node (i) is opened after the root traversal
calculation based on the tree depth first algorithm.

The task decomposition scheduling algorithm divides the
simulation task into 2 layer m fork trees, assigned to each

vol 29 no 4 July 2021 243

FEDERAL SYNERGY COMPUTING MODEL BASED ON NETWORK INTERCONNECTION

Figure 3 Task Decomposition Model.

computing unit. If the subtask is larger, it can continue
to decompose. The task can be decomposed statically or
dynamically. It is necessary to determine the granularity
of decomposition, the coefficient of convergence and the
convergent boundary of decomposition.

3.1 Task decomposition algorithm

A computing task can be described by a task system
(T, M, S, L, P). The task decomposition model is shown
in Figure 3:

The system uses two layers of nested DAG, the sub_DAG
is a collection of subtasks DAGi decomposed by DAG, E is
a collection of communication edge ei , T is a collection of
communication costs Ti .

Thus we obtained:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

DAG = {subDAG, E, T, V }
sub_DAG = {DAG1, DAG2, DAG3, . . . , DAGn}
E = {e1, e2, e3 . . . en}
T = {t1, t2, t3 . . . tn}
DAGi = {subVi subEi subTi subCi }

. (1)

DAGi is the No. i task in the collection of t subtask, E is a
collection of communication edges between DAGi , Cij ∈ C ,
Cij is a collection of communication costs between DAGi .
Because the subtask uses the decomposition method of 2 layer
m fork tree, the communication cost will not change because
of the task decomposition; the cost is related to the relationship
between subtasks and task size; subtask DAGi is a decision
directed acyclic graph, and DAGi is the second layer of the
M fork tree. If DAGi cannot be decomposed, then m = 0,
otherwise the value of M is related to the decomposition
strategy. subVi , subEi , subTi , subCi are the collection of
DAGi neutron tasks, the collection of communication edges
between subtasks, the collection of sub task completion times,
and the collection of communication between the leaf node
and the root node. If the number of tasks is m +1, the number
of communication sides is M .

In the whole DAG collection, there is a data dependency
between DAGi . Data dependency between DAGi constitutes
a dependency collection. Dependency collection is defined
as an implementation results collection of subtask DAGi that
requires subtasks DAGm , . . . , DAGn or the transfer variables
during the execution of this task. {DAGm, . . . , DAGn} is
then called the data dependency collection of DAGi . The
data dependency collection can be extracted from the task
control process according to the subtask function, the subtask
DAGi must be executed after its data dependency collection
is executed. There are control dependencies, mutually
exclusive relationships, concurrency relationships and interest
relationships among subtasks in the whole task decomposition
process. When the output of task DAGm is the input of
subtasks DAGn , there is a control dependent relationship
between DAGm and DAGn ; When the task DAGm is runing,
the DAGn subtasks cannot be performed, and when the task
DAGn is runing, the DAGm subtasks cannot be performed, It
shows that there is a mutually exclusive relationship between
subtask DAGm and subtask DAGn ; When the DAGm and DAGn

subtask can be executed at the same time, and the execution
of a subtask does not affect the execution of another subtask,
then the subtask DAGm and DAGn constitute a concurrent
relationship; when the implementation of the subtask DAGm

can improve the efficiency and quality of the subtask DAGn ,
then the subtask DAGm and subtask DAGn constitute an
interest relationship.

In order to satisfy the data dependency between DAGi ,
the first root traversal must be performed. In order to
solve this problem, first the collection of previous node
and the collection of the next node must be solved. Let
PreviousNode(i) be the collection of previous node, and
NextNode(i) be the collection of next node, therefore:{

PreviousNode(i) = { j |e j i ∈ E}
NextNode(i) = { j |ei j ∈ E} (2)

As a 2 layer m fork tree, task DAGi has explicit previous
and subsequent relationships between each task, therefore, it
does not need to seek the relationship between the subtasks.

244 Engineering Intelligent Systems

H. WANG

3.2 Define subtask convergence boundary

In order to reduce the transmission of the original data, reduce
the traffic and improve the network throughput, a copy of the
original data is saved in the access unit mi , the MI can be
either a computer or a computing independent network unit
composed of several computers. The first layer of the task can
be extracted from the original data copy of the local computing
unit; it does not require data transmission. The original data
and the final results are stored in the Si of data center DBS.

Set M as a collection of computing unit mi in the system, S
is a collection of data center si , L is a collection of computing
unit capacity Li , P is a collection of computing power pi .

Thus we obtained:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M = {m1, m2, m3, . . . , mm}
S = {s1, s2, s3, . . . , ss}
L = {l1, l2, l3, . . . , lm}
P = {p1, p2, p3, . . . , pm}

(3)

mi is the No. i unit in the collection of computing units,si is
the No. i unit in the collection of storage units, li corresponds
to the load capacity of the computing unit mi , pi corresponds
to the computing power of the computing unit mi

When the system task is decomposed into an m fork tree
with hierarchical structure, the tree has a total of N subtasks,
the complexity O is introduced, which reduces the complexity
from O(N2) to O(N log N) [13]. Therefore:

kli ≤ Oi (N log N)

pi

In the formula, K is the coefficient of convergence. Given
the k value, when the ratio of the decomposition subtask
complexity is matched with computing power less than or
equal to the given boundary convergence condition kli , then
decomposition is stopped, and the decomposition tree is sent
to the computing unit mi .

3.3 Task decomposition description

The system uses task descriptions to describe the task
decomposition, task allocation, task recovery and so on, with
each task corresponding to a task description. The nodes
involved in the computation need to get the task description
from the server and compile it locally. When the computing
node LC is ready, the ready signal is sent to the management
server, waiting for system scheduling. The management
server MS maintains a task description for each computing
task, generating a task computing dictionary. The MS
implementation processor schedules the tasks by polling the
task descriptions, calculating the task dictionary and querying
the status of each computing node. Reference [9] used XML
as a task description method; this research also uses the XML
task tree view to describe the task when designing the task
description of the system. The task specification base node is
as follows:

<?xml version=“1.0” encoding=“utf-8” ?>
<TaskDescription>

<TaskDividedTree> </TaskDividedTree>
<SubTaskMapping>

<ComputingNode treeID=““>
<ImportData></ImportData>
<ExportData></ExportData>
<NodeDependence></NodeDependence>

<ComputingCode></ComputingCode>
</ComputingNode>
</SubTaskMapping>

</TaskDescription>

The <TaskDividedTree/> Node is the static description
of the whole task decomposition tree. Each Node contained
in the node has a strict description of the communication
edge ei , the communication cost ti and others of the subtask
DAGi . The node’s Node(i) hierarchical relationship reflects
the relationship between the previous and next node, this node
is the basis of task scheduling. Node <SubTaskMapping/>
is the input, output, static description and calculation
method of dependence of each sub node, the number of
sub nodes that are described in <TaskDividedTree/>, the
<SubTaskMapping/> will contain a description of the num-
ber of tasks that do not exceed <TaskDividedTree/>, TreeID
is the computing node <ComputingNode/> association Key
between <TaskDividedTree/> and <SubTaskMapping/>.
Node <ImportData/> contains the input requirements of the
computational tasks, and Node <ExportData/> contains the
final results. The results of the calculation of the node will be
uploaded to the storage server after the computing completion.
The node will be recovered before rescheduling when the
task computing is completed, and the results of the last task
before the recovery will still be maintained in the node.
This model can provide P2P node data access, which can
reduce server data transfer pressure. <NodeDependence/>
is a collection of dependencies of nodes. By accessing the
nodes, the nodes can be set to wait, sleep, and wake up and so
on. <ComputingCode/> is the algorithm description of the
computing nodes. According to this algorithm, the computing
nodes are dynamically compiled and calculated locally. The
algorithm is compiled only when the first load is run, the
second run does not require compilation, this differs from the
interpretation of the implementation, so the performance loss
can be ignored.

4. TASK SCHEDULING ALGORITHM
AND MODEL EVALUATION

4.1 Task scheduling algorithm

The system algorithm based on the original task scheduling
algorithm in Reference [10] has been significantly improved.
The improved model uses a hybrid strategy, and its algorithm
is described as follows.

In order to improve the efficiency and throughput of the
cluster, the task allocation must be intelligent when scheduling
a group of tasks, so that the computing resources of each
computing node can be fully utilized. In order to prevent
some computing tasks from being permanently executed, the
equalization of the computing resources as much as possible in

vol 29 no 4 July 2021 245

FEDERAL SYNERGY COMPUTING MODEL BASED ON NETWORK INTERCONNECTION

Figure 4 Algorithm Principle.

each task group must be considered during the system design
process.

A task will go through seven states from task submission
to completion, such as wait, Map, ready, execute, reduce and
complete. When a computational task is successfully created,
it needs to be submitted to the system, the system first checks
the completeness of the task description, and follows the task
instructions with an itemized audit verification. Each LC
is queried according to the task description of the sub task
description tree. When the idle LC are not able to satisify
the computing task it is necessary to wait for the non-idle
computing nodes to complete their tasks; the submitted task
enters the wait state at this time. According to the task
description tree, each sub task will be mapped to each local
computing node LC when the system has the idle LC to
meet the computing task, then the submitted task then enters
the ready state. The implementation state begins when the
management server then assigns each node in turn to start the
calculation according to the instructions of the dependencies
of the task. When each task node performs all the tasks in turn,
the complete signal is reported to the management server, and
the results are transmitted to the storage center, the system then
enters the reduce state. The system enters the finished state
when all the tasks have been completed and all the results
have been returned. The management server sends the GC
command to each node that joins the computation, performs
the garbage collection, releases resources, and waits until the
next scheduling.

Task scheduling algorithm adopts the priority algorithm
and the first come first serve (FCFS) hybrid scheduling
algorithm, and adds the basic principles of the rotation
method. In order to do this the MS Server maintains a task
dictionary<int,Queue <Task>>. Where Key is the priority
of the task queue, Queue <Task> is task queue, and Task is
a single computing task. The algorithm principle is shown in
Figure 4.

When the computational task is established, the system is
statically assigned a priority value K , the K -value is between
1 ∼ n. The task enters the corresponding priority queue
according to the K value. The task is queued according to
the first come first serve (FCFS) scheduling algorithm when
it enters the queue because all tasks begin with the same
priority. Viewed from a straight line, the algorithm is fair
in a general sense, that is, each task will receive their turn
when the previous task has completed and there are resources
available. However, some tasks will take much longer to

complete than others and some tasks with a short execution
time may be delayed significantly if they arrive after these
tasks, To compensate for this, the system uses the round robin
method, and sets a time slice for each task. When the task
has used the allocated time slice, the execution of the task is
aborted, and the K − 1 value of the task is determined. If
the value of the K − 1 is in the Dictionary Keys, that is, the
value of Dictionary. ContainsKey (K − 1) is equal to true,
then the task is removed from the head and added to the end
of the Dictionary, it is contained in Dictionary [K − 1] team;
otherwise it is added to the end of the Dictionary [K] team.
The choice of the time slice length will directly affect the
system overhead and response time. If the time slice is too
short the amount of taken to switch tasks will increase the
overall cost of the system. If the time slice length is too long
even the longest task will be executed within the time slice, the
round robin algorithm will be ignored and the system will fall
back to the FCFS algorithm. The selection of the time slice
length can be determined according to the requirement of the
response time of the system R and the maximum allowable
tasks number Nmax in the queue, and it can be expressed as:
q = R/Nmax. In the const value of Q, the response time of
R seems to be greatly reduced if the number of tasks in the
queue is far less than Nmax. For system overhead purposes,
the timing of task switching will not change due to the fixed
value of Q. For simplicity, the system uses a fixed time slice.

The performance of task scheduling can be measured by
parameters, such as task turnaround time, response time,
throughput, and the utilization ratio of computing nodes. Here
the focus is on the task turnaround time. The turnaround time
for the task i is defined as Ti , thus: Ti = Tie − Tis . Where
Tis is the start time of the task and the Tie is the end time
of the task completion. For n(n >= 1) tasks, the average
turnaround time is:

T = 1

n

n∑
i=1

Ti

When the task is submitted to the system, it will be executed
immediately until the task is Mapped, the task is then likely
to enter the wait state. Setting Tiw as the waiting time
that the task waits between submission and Map, the correct
turnaround time is then noted as Ti , and Ti = Tir + Tiw ,
where Tir is the execution time. Furthermore, the weight
of the turnaround time can be used to measure the scheduling
performance. Define the weighted turnaround time as the ratio
of task turnaround time to task execution time: Wi = Ti/Tir .

246 Engineering Intelligent Systems

H. WANG

For the n tasks contained in the task flow, the average weighted
turnaround time is:

W = 1

n

n∑
i=1

Wi

4.2 Model evaluation

Through the revision and improvement of the scheduling
algorithm in literature [12], the evaluation model of the system
is as follows.

Assuming that the size of the particle is linearly related to
the size of the task, the execution time Ti is:

Ti = bi + ai xi (4)

bi is the time of initializing the system, ai is the task
granularity linear growth factor, xi is the size of tasks.

Assuming that the data transmission time is linearly related
to the size of the task, then,

Data_Ti j = Data_bi j + Data_ai j xi (5)

In the formula, Data_Ti j is the required time to transfer
data from the task i to the task j . Where Data_bi j is the time
required to transmit the initialization data, Data_ai j is a linear
factor.

Formulas (6)–(7) can be adopted to solve the TCP traffic
model, referenced in the literature [14, 15]. In a high speed
local area network with 100M/1000M adaptation, the ratio of
the data transfer time and the computation time are small in the
whole simulation process, that is because the transmission rate
between computers is very high, while Data_bi j and Data_ai j

are relatively small and a copy of the original data has been
saved in the computing unit prior to the start of the calculation.

T (tRTT, s, p) = c × s

tRTT × √
p

(6)

T (tRTT, s, p)

= min

⎛
⎜⎜⎝wm × s

tRTT
,

s

tRTT ×
√

2bp
3 + tRT o min

(
1, 3,

3bp
8

)
p(1 + 32p2)

⎞
⎟⎟⎠
(7)

For the 2 layer m fork tree DAGi , the size of the sub
task is total M copies, but the granularity of the M subtasks
are different. The relationship of the sub task scale is then
xi = x1i + x2i + · · · + xmi , assuming that the time of task
execution and the task scale are a linear relationship, and
the execution time of each subtask is sub_Tki = bi + ai xki .
The data transfer time between the leaf node and the root
node is subData_Tki = Data_bi j + Data_ai j xi j , where
k = 1, 2, 3, . . . M . For task i , if it is not decomposed, the
task completion time is calculated by the formula (1); if it is
decomposed, then the formula (5) is used

Ti = Max(subT1i , . . . , subTmi) + sub_rooti (8)

According to the characteristics of sub task diversity, the
primary role of the root task is: transmit data from the

root node to the leaf node, then compute and collect results
from the leaf nodes to the root node, and transform the root
task computing result to the DAG map of lower sub task.
Therefore, the computing time of sub_rooti is mainly the data
transmission time. If the scheduling algorithm supports a data
parallel transmission, sub_rooti can be approximated by the
formula (9):

sub_rooti = Max(subDataT1k , . . . , subDataTmk)

+ Max(DataTi1 , . . . , Data_Tis) (9)

5. COMPUTE NODE ASSIGNMENT

MS loads the subtasks into a task list List<T> by reading
the task description. Then, the task priority of each sub task
is determined according to the dependency set list List<R>

of each task in their description. In the calculation of node
allocation, at first each of the sub tasks in the List<T> will
be distributed into a different Dictionary<int, Queue<T>>

according to the level of each sub tasks. Where the int is
the task queue level, the Queue<T> is the same level task
queue. The tasks in the queue are scheduled according to
the FIFO strategy, and the high level sub task queue is given
priority to compute the node assignment. The FIFO strategy is
used to compute node allocation between tasks and subtasks.
When the time slice of the task T in the queue is expended,
it will release the computing node, and then return to the
end of the queue, waiting for rescheduling. When the task
interdependence leads to competition for resources, the task
will be sent to the low level queue by reducing the level of
sub tasks, and this can solve the problem of deadlock caused
by task preemption. The computing node is released and the
system task is completed when the task is completed. The
node will request to reassign the task and modify the state
of the task in the MS. The MS will notify the subtasks that
are waiting for the dependency to continue execution by event
method.

6. COMPUTING DATA
COMMUNICATION MODEL

According to the calculation model of the above design,
master-slave mode and P2P mode are adopted for the
communication and data exchange between the nodes, the
chart of Compute node LCn startup flow as shown in Figure 5:

The node will run the joint computing program, which
logs on when it is started. After the program starts, it firstly
initializes the parameter information of the node. The service
address of the managed server MS is stored in each LC
compute node when the LC is remotely deployed by the
system configuration. Using this parameter, each LC can
detect the presence of the server and try to connect to it. If
the connection is not successful, then the system link fails,
the node cannot access the collaborative computing system,
and it will become a calculation of ac-node. If the node can
connect to the server, it will be registered on the MS, and
the registration information will contain the basic information

vol 29 no 4 July 2021 247

FEDERAL SYNERGY COMPUTING MODEL BASED ON NETWORK INTERCONNECTION

Figure 5 Compute Node LCn Startup Flow.

of the node, computing power, etc.; LC can apply to the
MS server to run programs in computing task nodes after
successful registration. If the MS server does not have a task
at this time, that is to say, if the federal computing system is
idle, the node will then set itself to idle,waiting for scheduling.
When the MS server has a RC application task it will scan the
status of the local compute node client LC after it completes
the initialization of the task. If the number of idle computing
nodes LC the MS has scanned is more than 0, then it proceeds
to resource allocation and task scheduling, if the number of
idle nodes the MS scanned is 0, the task will be set into the task
scheduling queue and wait due to the lack of resources. The
idle LC will download the task specification and load it when
it receives the signal from the MS scheduler. LC compiles
the subtask execution code in task specification through a
dynamic compilation system, and applies for the issuance of
subtasks from MS after the task specification was compiled.
Under normal circumstances, the subtask execution code in
the task specification can be compiled through the instructions
received from the MS. This can show that the calculation of the
computing power of the node cannot meet the requirements of
the task description if it cannot be compiled by the instructions.
When the LC receives the subtask from MS, it carries out the
task loading, and analyzes whether there are other subtask

dependencies; if there is a dependency, the output parameters
of the subtasks associated with this subtasks are first obtained.
If LC can receive this data, it is illustrated that the subtask has
been terminated and its output can be used as input parameters
for this task, otherwise, the output data cannot meet the input
of the task and the task is then required to recalculate the output
in accordance with the requirements of this task. When the
output of all dependent subtasks can satisfy the input of the
task, the task is executed; the results of the calculation will
be uploaded to the data sharing area for other subtasks. The
LC that completed the task computing can be reinitiated and
send a request to the MS for another subtask. If there are no
subtasks available, LC is set to idle and waiting for the MS
scheduler.

Three methods are used to realize the communication
and data exchange between nodes. The data that has
been calculated by the computing node and merged to the
server can be applied by the other nodes that apply to
the data management server. When the application for the
identification of the identity of the consumer data is audited,
the application node can consume data provided by the
production data node; if the node is unable to meet the request
of the data node to the management server, the reason for the
failure of the data is checked; if the other computing node is

248 Engineering Intelligent Systems

H. WANG

calculating the application data, the calculation node enters
the wait state, and registers the waiting resource application
to the MS server. When all the calculations are completed and
all the results are reported to the data server, the MS server
will find the waiting nodes from the resource application, and
inform those application data nodes listed in the application
form to load the data; if the data is not retrieved on the
management server, and the current computing network does
not have a computing node to compute the data, then the
current computing node is set into the stack, and compute
dependent data set.

In order to ensure the communication and event notification
between the computing node and the MS server, and to
mask the difference between the computing nodes hardware
and heterogeneous structure of the operating systems, the
computing nodes use the Net.Tcp communication protocol
to provide remote services via an open Web service. In
the system design, the Windows Communication Foundation
(WCF) is adopted to provide data sources. The WCF provides
a high performance network communication protocol based
on the Net.Tcp protocol and system components with Net.Tcp
Port Sharing Services, so that the port can be shared between
multiple user processes. The data exchange uses the XML
language which is based on the object transfer protocol, and
this provides the possibility for the exchange of structured
and solidified information between heterogeneous computing
nodes. In addition, in order to ensure the data access security
between nodes, the system uses a security algorithm based on
the elliptic curve algorithm and federal verification [16].

Due to the different environment of LC and RC, the
complexity of the RC host itself and the limitation of the access
rights, the RC and LC systems are designed using different
strategies. LC and RC also use different protocols in the
communication method. LC uses the Net.Tcp protocol, but
RC uses the pollingDuplexHttpBinding protocol. The HTTP
protocol is commonly allowed through firewalls, using this
protocol can prevent scheduling failures due to the RC node
being blocked by a host firewall.

In order to make the management server simultaneously
serve two kinds of protocols, it needs to be configured
with netTcpBinding and pollingDuplexHttpBinding in the
bindings section of the serviceModel section of the protocol.
The pollingDuplexHttpBinding configuration is as follows:

<pollingDuplexHttpBinding>

.

</pollingDuplexHttpBinding>

This section is added into the <bindings> section. When
configuring the netTcpBinding protocol, you need to add the
following section to the <bindings> section:
<netTcpBinding>

.

</netTcpBinding>

The system uses the Silverlight rich client as the develop-
ment model of RC in the RC endpoint. Silverlight does not
support the WCF Security model; therefore to call this service
in SL, the Security Mode must be set to None. By default, the
Security Mode is Transport, so this section must not be omitted
and must be explicitly configured.

When configuring the information about the service,
two endpoint points need be added because of the
adoption of the two protocols. There are two kinds
of endpoints in the <services> node, one is called
by the client, and the other is the publication of
metadata for the generation of service information.
Using <endpoint contract=“IMetadataExchange”
binding=“mexTcpBinding” address=“mex”/> node to
publish metadata. Using <endpoint address=“ForWinform”
contract=“NetTcpDuplexCommunication.Server.IService1”
binding=“netTcpBinding” bindingConfiguration=
“tcpConfig”/> node to Configure client Net.TCP
calls. Using <endpoint address=“ForSilverLight”
binding=“pollingDuplexHttpBinding” bindingConfiguration
= “pollingDuplexHttpBinding1” contract=“EndoscopeIMS.
Server.IServiceForEndoscopeCDS”/> node to Configure
client pollingDuplexHttpBinding calls.

Silverlight can only use ports between 4502 and 4535 so it
is imperative when adding baseAddresss to the host sectionto
use a port of 4502.

When adding references it is important to write the whole
address completely:

net.tcp://localhost:4502/NetTcpDuplexCommunication.
Server/Service1.svc/ForWinform

In addition, the aspNetCompatibilityEnableds must
be set to true, such as: <serviceHostingEnvironment
multipleSiteBindingsEnabled=“true”
aspNetCompatibilityEnabled=“true”/>

In order to complete the communication between the
server and the client, the interface must be specified
in the WCF interface. When a callback [ServiceCon-
tract(CallbackContract = typeof(IClientCallback))] attribute
for the WCF interface is added, the [OperationCon-
tract(IsOneWay = true)] attribute must be added to all callback
methods for the interface IClientCallback.

A method is included in the IService1 interface to register
a subscribe server. The server call back RC or LC client
by the registration of computing nodes in Register, the client
callback, and the client to unsubscribe by UnRegister. Custom
callback method PumpMessageModel is the implementation
of callback push message pump. When the server callback
to the client fails, the server will determine that the client is
offline and that it must be removed from the list of server
computing nodes.

On the server side, the [AspNetCompatibilityRequirements
(RequirementsMode=AspNetCompatibilityRequirements
Mode.Required)] and [ServiceBehavior(Concurrency
Mode=ConcurrencyMode.Multiple,InstanceContextMode
=InstanceContextMode.Single)] attributes must be added
to the Service1 implementation class that inherits the
IService1 interface. There is a static Dictionary<string,
IClientCallback> _clients dictionary to save the registered
remote computing node in the Class, and it is a static list
of clients. The implementation of the Register is to add the
current channel directly to the _clients dictionary for the
invocation.

When the specified channel does not callback, the channel
is removed from the _clients dictionary, and the computing

vol 29 no 4 July 2021 249

FEDERAL SYNERGY COMPUTING MODEL BASED ON NETWORK INTERCONNECTION

Figure 6 The Dependency Set Ri Relation.

node is declared dead. The node will no longer be assigned
sub tasks and scheduled. The server will reclaim the task that
has been assigned to the node, and then re-perform the Map
on the other idle nodes.

When the system is deployed, as the WCF host uses a high
version of IIS that supports net.tcp binding, it is necessary to
enable the HTTP and the Net.Tcp protocols, and modify the
net.tcp configuration to bind to 4502:*. Since WCF Activation
is an optional component of Windows, it is not installed by
default, so WCF Activation needs to be installed for the IIS
support of WCF calls to non HTTP pipes.

In order to ensure that the RC of the Silverlight allows
crossing domain access applications in the absence of policy
files, cross domain configuration clientaccesspolicy.xml files
are added to the WCF host publishing directory. In addition,
the built-in program must have the trust level elevated to
trusted in OOB mode.

7. USE CASE TEST OF
COMPUTING MODEL

Given a computing cluster system C which consists of Man-
agement server M , Storage service cluster Si , and Computing
node Ni , Then C can be described as: C = {M, Si , Ni }.

Given i = 1 of use case C test calculation cluster
Si . Ni is a collection of {N1, N2, N3, N4, N5, N10, N20, N40,

N80, N120}.
Given the job J , the J can be broken down into subtasks set

Ti and subtask dependency set Ri . Then J can be described
as: J = {Ti , Ri }.

Given the subtask set Ti and the subtask dependency Ri of
the test case J , it can be described as: Ti = {TA, TB , TC , TD,

TE , TF , TG , TH , Ti , TJ , TK , TL , TM , TN , TO , TP , TQ}; Ri =
{RA → RBCDEFHN, RB → RHL, RC → RHINO, RD →
Ri , RE → RGJ, RG → RK , RH → RMN, RI → RP , RJ →
RPQ}. The dependency set Ri relation is shown in Figure 6:

By the dependency set Ri , the priority queue Qi

in M can be defined: Qi = {Q1, Q2, Q3, Q4} =
{{A}, {BCDEF}, {HIJG}, {LMNOPQK}}, here the queue pri-
ority is as follows: Q1 > Q2 > Q3 > Q4.

For the decomposed subtask Ti , its execution time can be
described by a four tuple(Tin, Tout, Tinstructions, Tcommcapacity),
where Tin is the time required to execute the task execution,
which is dependent on the functional dependencies of the

dependency set Ri and the input data size; Tout is the result
of the output of the task to the data center, which is mainly
affected by the output data scale and network communication
ability; Tinstructions is the time required to compute the node
Ni execution of the subtask Ti , whose length is determined
by the computing power of the node Ni (the total number
of instructions executed per second) and the total number
of subtasks. The Tcommcapacity is a main expression of
measuring the communication capacity of the node, where the
communication throughput of the node Ni is greater, and the
time of each communication is shorter. The task simulation
test case data are shown in Table 1:

Test results are shown in Figure 7 for the use case:
As can be seen from the graph, with the increase of

computing nodes, the time required for the task is gradually
reduced. However, when the number of nodes reaches a
certain threshold, the time required by the number of nodes
is gradually weakened. The main factor that affects the time
required to complete the task is the computing capacity of a
single node and the network communication speed, when the
computing capacity is stronger and the communication speed
faster, the less time is required.

8. CONCLUSION

This federal synergy computing model which the system
provided with heterogeneous and dynamic characteristics can
be applied to large-scale networks and supports the dynamic
check in and check out of nodes. Using computer networks
to connect heterogeneous computer devices to provide high
performance computing capabilities is currently the most
common method of super-large scale computing. With the
help of previous research results, this paper proposes a
compact scalable hybrid federal computing model based on
literature [17–19]. To compare with the current mainstream
network computing model, the implementation of the pro-
posed method shields the differences of computer nodes in
the software and hardware by the design of the application
network protocol layer. Any computing device can access the
system at any time to participate in the operation. This greatly
reduces the cost of computing equipment and the formation
of a network of inexpensive computing power and provides
an alternative solution for the rapid implementation of a large
scale computing network. The system has high expandability

250 Engineering Intelligent Systems

H. WANG

Table 1 Simulation Test Case Data.
Network

Task TotalTask Output Communication
Name Instruction DataSize Capability
A 6128701 23552 921
B 5243421 22528 614
C 8336538 44032 204
D 4481950 46080 716
E 7788828 29696 716
F 9793721 47104 716
G 6797833 49152 716
H 6534583 16384 921
I 9688247 11264 102
J 2105543 46080 102
K 7359003 46080 716
L 1510364 38912 512
M 1215425 49152 819
N 9784983 26624 307
O 2083561 25600 512
P 1855908 32768 102
Q 5329746 27648 614

Figure 7 Use Case Test Results.

and feasibility when compared with the method provided by
literature [18]. The task decomposition algorithm in this paper
is a further extension of the method mentioned in the literature
[12], and further improves the application environment of the
method. However, the task decomposition algorithm in this
system cannot be completely decomposed by MS. This paper
will focus on enhancing the automation and intelligence of
the program and improving the task diversity algorithm. The
calculation model proposed in this paper, to a certain extent,
has the advanced nature and reference to solve this kind of
method, and has certain practical significance for engineering
guidance.

ACKNOWLEDGEMENT

The study was supported by science and technology plan
project of Henan province (No. 212102210395), and high
level talent introduction research start project of North
China University of Water Resources and Electric Power
(No. 40427).

REFERENCES

1. Szymanski, T. (2000). High Performance Computing with
Optical Interconnects. Proceedings of SPIE — The International
Society for Optical Engineering, p. 217–225.

2. Aoki, K., Yamagiwa, S., & Ferreira, K. (2004). Maestro2: High
Speed Network Technology for High Performance Computing.
Proc of IEEE International Conference on Communications,
NJ: IEEE, p. 1033–1037.

3. Walker, E. (2007). Creating Private Network Overlays for High
Performance Scientific Computing. Lecture Notes in Computer
Science, p. 204–222.

4. Nishi, H., Tasho, K., Yamamoto, J., et al. (2000). A Local
Area System Network RHiNET-1: A Network for High
Performance Parallel Computing. Proceedings of the IEEE
International Symposium on High Performance Distributed
Computing, p. 296–297.

5. Pronk, S., Pouya, I., & Lundborg, M. (2015). Molecular Simu-
lation Workflows as Parallel Algorithms: The Execution Engine
of Copernicus, a Distributed High-Performance Computing
Platform. J Chem Theory Comput, 11(6), 2600–2608.

6. Calabrese, B., & Cannataro, M. (2015). Cloud Computing in
Healthcare and Biomedicine. Scalable Computing, 16(1), 1–18.

vol 29 no 4 July 2021 251

FEDERAL SYNERGY COMPUTING MODEL BASED ON NETWORK INTERCONNECTION

7. Bezbradica, M., Crane, M., & Ruskin, H.J. (2016). Applications
of High Performance Algorithms to large Scale Cellular
Automata Frameworks Used in Pharmaceutical Modeling.
J Cell Autom, 11(1), 21–45.

8. Somasundaram, T.S., & Govindarajan, K. (2014). CLOUDRB:
A Framework for Scheduling and Managing High-Performance
Computing (HPC) Applications in Science Cloud. Future Gener
Comp Sy., 34(5), 47–65.

9. Liu, B., (2006). Agent Task Decomposition and Scheduling
in Distributed Network Management. Nanjing: Southeast
University.

10. Zheng, K. (2010). Operating System Concepts. Translation,
Beijing: Higher Education Press, 11–13, 138–147.

11. Xiong, Kaiqi, & He, Yuxiong (2013). Power-efficent Resource
Allocation in MapReduce Clusters. Proceedings of the 2013
IFIP/IEEE International Symposium on Integrated Network
Management, p. 603–608.

12. Chen, Ming (2009). Distributed Computing Application Mod-
els. Beijing: Science Press.

13. Barnes, J., & Hut, P. (1986). A Hierarchical O(NlogN) Force-
calculation Algorithm. Nature, 324(6096), 446–449.

14. Floyd, S., & Fall, K. (1999). Promoting the Use of End-to-end
Congestion Control in the Internet. IEEE/ACM Transcation on
Networking, 7(4), 458–472.

15. Padhye, J., Firoiu, V., Towsley, D., et al. (1998). Modeling TCP
Throughput: A Simple Model and its Empirical Validation. In:
Oran, D., ed. Proceeding of the SIGCOMM. Vancouver: ACM
Press, 303–314.

16. Chen, H., Wang, H., Li, Y., et al. (2014). Security Token
and Federated Authentication Based on Elliptic Curve Groups
Algorithm. Microelectron Comput, 31(11), 88–91.

17. Javadi, B., Abawajy, J.H., & Akbari, M.K. (2008). Performance
Modeling and Analysis of Heterogeneous Meta-computing
Systems Interconnection Networks. Comput Electr Eng, 34(6),
488–502.

18. Yuan, L. (2011). A Heterogeneous Wireless Network Intercon-
nection Strategy Based on IP Switching. Proc of the 2011 IEEE
International Conference on Computer Science and Automation
Engineering, CSAE, 4, 474–477.

19. Javadi, B., Akbari, M.K., Abawajy, J.H., et al. (2009). Multi-
cluster Computing Interconnection Network Performance Mod-
eling and Analysis. Future Gener Comp Sy, 25(7), 737–746.

252 Engineering Intelligent Systems

