
Eng Int Syst (2021) 5: 279–289
© 2021 CRL Publishing Ltd Engineering

Intelligent Systems

Load Balance Optimization of
Distributed Massive Database
Information Acceptance and
Processing in the Internet of
Things Scenario

Jialiang Wang∗

Department of Information and Engineering, Sichuan Tourism University, ChengDu 610072, China

In order to make full use of the resources of each service node in a cluster to improve the overall performance of the cluster, it is necessary to select
the appropriate load balancing technology and efficient load balancing algorithm to allocate client access requests. Focusing on the load imbalance
problem of Spark, this paper proposes an adaptive task scheduling strategy based on Spark cluster to achieve the load balancing optimization of Spark
clusters. This strategy uses the heuristic algorithm of the ant colony simulated annealing fusion algorithm to optimize the task scheduling strategy of
the Spark cluster according to the node’s current load and computing resources. This achieves the appropriate allocation of tasks for the purpose of
load balancing optimization, thereby improving the cluster’s task-processing efficiency. In order to achieve dynamic load balancing on the Reduce
side, a dynamic and lightweight division strategy is adopted. This strategy combines the load information for the dynamic design of the sampling scale
and the lightweight design of the sampling method, and combines the sampling data and node performance to determine the number of Reducers.
In addition, a division strategy is formulated based on the partition analysis of the sampling results and load information. After experimentation and
analysis, it is concluded that the optimization technology has significantly improved the parallel computing performance of the Map Reduce cluster.

Keywords: load balancing; ant colony-simulated annealing algorithm; distributed massive database; Internet of Things (IoT) scenario

1. INTRODUCTION

There are differences in the structure and performance of a
single server in a server cluster. Client access is random
and bursty. The source and content of access requests are
fragmented and diverse, causing some servers to bear either
too little or too much load [1–3]. Unbalanced load distribution
will seriously reduce the overall performance of the server
cluster system and cannot convey the original meaning of the
cluster. To solve this kind of cluster server imbalance problem,

∗E-Mail: wang20202021ei@163.com

it is necessary to ensure that the load level of each node is
consistent at all times [4]. By means of a load balancing
strategy, the system distributes the received requests to the
available nodes, avoiding blind allocation that leads to uneven
availability of nodes and causes the load of the cluster system
to tilt. Therefore, load balancing technology is vital to the
cluster system and can improve the performance of the cluster
[5,6].

A key-value storage database is one in which data is stored
in memory and disk in the form of keys and values [7]. Key-
value storage has a commonly-used simple data model: a

vol 29 no 5 September 2021 279



LOAD BALANCE OPTIMIZATION OF DISTRIBUTED MASSIVE DATABASE INFORMATION ACCEPTANCE AND PROCESSING INTHE INTERNET OFTHINGS SCENARIO

map/dictionary that allows clients to request and push values
through keys. A well-known, key-value store database is
Amazon Dynamo. It is used for multiple purposes in Amazon
and other databases. As one of the earliest No SQL products,
it has had a great impact on subsequent No SQL databases.
Redis is another well-known No SQL database developed
by Salvatore Sanfilippo that offers key-value storage [8]. It
provides a richer data structure comprised of list, set, hash,
string, etc. and operations on these data structures. Redis
loads the entire database system into memory, so it has high
performance, rich data types, and all operations are automatic
operations [9]. However, because most of Redis’s data is in
memory, its security is poor. Secondly, since the price of
memory is relatively low compared with that of hard disks, the
cost-effectiveness of scalability is not high. However, Ippotito
suggests that a caching layer can be integrated in Redis
[10]. The document database puts several pairs of key-values
into a particular structure as a transition from a simple key-
value storage to a more complex storage database. Apache
Couch DB and Mongo DB are typical of such databases.
Couch DB is written in Erlang, which is an improvement
on Lotus Notes because its developer worked at IBM and
referred to the former’s technology. The notable feature of
Couch DB is a document database that contains a number of
documents with no fixed structure in a flat address space that
can be accessed through a RESTful HTTP interface [11]. It
allows multiple parallel versions of the same document,
and the database automatically detects and merges conflicts.
According to its submission system and the way it manipulates
files, Couch DB can be considered to meet ACID attributes.
The most famous application of Couch DB is ubuntu one, a
cloud storage and replication service under the Ubuntu Linux
environment. The BBC web application platform, several
Facebook applications, and Apache Lucene also use Couch
DB as their server.

A load balancing algorithm is the key to achieving cluster
system load balancing, and there have been many advance-
ments in this field [12–14]. Load balancing algorithms are
divided into two categories: static load balancing algorithms
and dynamic load balancing algorithms. Static load balancing
algorithms include random algorithms, polling algorithms,
and weighted polling algorithms. This type of algorithm saves
the task allocation ratio of each server as a system parameter
in the load balancer, regardless of real-time changes in server
load. The static load balancing algorithm is an open-loop
load adjustment method, but it cannot meet the performance
requirements of the new generation of server clusters.
Dynamic load balancing algorithms include the minimum
connection number algorithm,weighted minimum connection
number algorithm and dynamic weight round-robin algorithm
[15]. The load balancer will periodically receive the operating
status of each server, and use this as a basis for selecting the
target node to process the request. Under normal circum-
stances, compared with static algorithms, the performance
of dynamic load balancing algorithms is 30%–40% higher,
but dynamic load balancing algorithms require additional data
processing and transmission [16]. With the improvement of
computer performance, the system resources consumed by the
dynamic load balancing algorithm will basically not affect the
performance of the load balancer [17]. Because of its better

flexibility and efficiency, many research results have been
produced by the dynamic load balancing algorithm. Scholars
in the field have grouped cluster servers in the cloud computing
environment according to their hardware, and grouped nodes
with similar performance into one group, thereby simplifying
calculations and reducing problems such as delays caused
by high concurrency [18]. Researchers use the concept of
entropy to divide the cluster into several uniform domains
to construct a hierarchical cluster system, which prevents
server communication delays caused by excessive clusters
[19]. Researchers have set the distribution weights as the
calculation indicators, and optimized them with the critical
acceleration regression algorithm [20].

To address the problem of load imbalance in Spark,
this paper proposes an improved strategy which is based
on an optimized task allocation method to achieve load
balancing. Because the ant colony algorithm can easily fall
into a local optimal solution, this paper proposes ant colony
simulated annealing fusion algorithm. The fusion algorithm
introduces the notion of random disturbance in the simulated
annealing algorithm into the ant colony algorithm to make
up for the shortcomings of the ant colony algorithm and
shorten the iteration time while avoiding the local optimum.
Subsequently, the ant colony simulated annealing fusion
algorithm was used to optimize the task scheduling strategy,
and the task scheduling improvement strategy was proposed,
and the load balancing optimization of the Spark cluster
was realized by means of the task scheduling improvement
strategy. Optimization measures have been taken for the three
objects (intermediate data set, reducer number, and division
strategy) that can affect load balancing on the Reduce side. An
appropriate experimental environment is established, and the
optimized Map Reduce is tested in a cluster environment with
experimental data. The results show that a good optimization
effect has been achieved.

The rest of this paper is organized as follows. Section 2
analyzes the architecture of the distributed massive database
system in the IoT scenario. In Section 3, a distributed
mass database load balancing optimization algorithm based
on ant colony-simulated annealing is designed. In Section 4,
experiments and analysis are conducted. Section 5 concludes
the paper with a summary of this study.

2. ARCHITECTURE OF A DISTRIBUTED
MASSIVE DATABASE SYSTEM IN THE
IOT SCENARIO

2.1 Architecture of a Distributed Massive
Database System

The distributed mass database system in the IoT scenario is an
organic combination of distribution and unification, and is an
extension of the centralized database system. The centralized
database system divides the database into an external model
and an internal model. However, the model structure of
a distributed massive database in the IoT scenario is more
complicated because its structure can usually be divided
into global external mode, global conceptual mode, sharding

280 Engineering Intelligent Systems



J. WANG

Figure 1 Distributed Massive Database Management System Architecture in the IoT Scenario.

mode, distributed mode, local conceptual mode, and local
internal mode: a total of six modes. The conversion between
the various modes is similar to that of a centralized database
system, which is implemented by multiple images provided
by the global and local database management systems.

The centralized database consists of a database, a database
management system, and a database administrator. The
distributed massive database system architecture in the IoT
is also expanded on the basis of the centralized database
system. This distributed massive database system divides the
database, the database management system, and the database
administrator into local and global. Of course, the data
dictionary in the database is also indispensable. In the IoT, the
distributed mass database system divides the data dictionary
into a local data dictionary and a global data dictionary. In
addition, according to the requested data, the users of the
database are also divided into local users and global users.
Figure 1 shows the architecture of the distributed massive
database system in the IoT scenario.

In the IoT scenario, the data in the distributed massive
database system is scattered and stored on multiple sites
connected by a computer network, and such scattered users
cannot feel it. This feature is called the physical distribution
of data in a distributed massive database system in the IoT
scenario, also known as distributed transparency. Distribution
transparency means that when using the database, users do
not need to care about where the required data is stored,
how the data is distributed, or which system each site server
uses, and which database management system the database
uses. When a user uses a data system, the distributed mass
database system of the IoT will process the data according to
the required distribution. This process the user feels and uses
a centralized database is exactly the same, that is, completely
transparent.

The data in the distributed massive database system of the
IoT is scattered on various sites in the network, and each site
is a relatively independent database system that is managed
and maintained by the local database management system.
However, the data on each site can be used by users of other
sites in addition to local users, that is, global applications.
The distributed mass database system of the IoT constitutes
a system of data that is scattered on each site. All users can
use this distributed mass database system in the IoT. All users
and all sites are distributed in the IoT scenario. The unified
management of the distributed massive database management
system is the “logical integrity” of the distributed massive
database system of the IoT. Figure 2 depicts the distributed
massive database model in the IoT scenario.

2.2 Distributed Massive Database System
Functions in the IoT Scenario

Distributed massive database systems in the IoT scenario are
divided into heterogeneous DDBS and isomorphic DDBS or
into centralized DDBS and decentralized DDBS. Therefore,in
addition to managing local databases, they also contain many
more complicated functions. However, their basic function
is to realize the establishment, query, update, replication,
and maintenance of distributed massive databases in the
IoT scenario. It also includes data distribution, query opti-
mization, centralized control, data consistency, concurrency
control, and update synchronization and globalization. The
distributed mass database management system in the IoT
scenario includes four basic functional modules:

(1) Query processing module

The query processing module is responsible for query
analysis and optimization processing. In distributed

vol 29 no 5 September 2021 281



LOAD BALANCE OPTIMIZATION OF DISTRIBUTED MASSIVE DATABASE INFORMATION ACCEPTANCE AND PROCESSING INTHE INTERNET OFTHINGS SCENARIO

Figure 2 Mode Structure of Distributed Massive Database System in IoT Scenario.

data query processing, data communication is often
generated, especially in wide area networks, where the
communication cost is very high. Therefore, query
optimization is very important in the processing of
distributed massive databases in the IoT scenario, which
is also the core issue of this paper.

(2) Integrity processing module

The integrity processing module is responsible for
maintaining the integrity and consistency of the database.
Due to the redundancy of the data, the module and the
query processing module will decide to use the data copy
of that site. In addition, this module is responsible for
maintaining the integrity of the database and improving
the concurrency control mechanism.

(3) Scheduling processing module

The scheduling processing module is responsible for the
coordination and scheduling of data transmission. The
module issues commands to the site where the data is
requested, and the database management system of the
site executes these commands. In order to complete
the distributed query, the necessary data transmission
between the sites is required to obtain the final result.

(4) Reliability processing module

The reliability processing module is responsible for
system failure recovery and data consistency. This
module continuously monitors the operating status of
each site of the system. Once a site fails, it will be
drained from the system, and the data on this site can
be obtained from other sites. After the fault is repaired,
the site can again be included in the system to maintain
the consistency of the database.

3. LOAD BALANCING OPTIMIZATION
ALGORITHM FOR DISTRIBUTED
MASSIVE DATABASES BASED ON ANT
COLONY-SIMULATED ANNEALING

3.1 Analysis of Load Balancing Optimization
Strategy

Since the task scheduling follows the data locality priority
scheduling method, the actual situation of each computing
node is ignored, this causes load imbalance. This paper
optimizes Spark cluster load balancing from the perspective
of task scheduling, introduces heuristic algorithms to improve
task scheduling strategies, and appropriately allocates tasks
to be executed to the computing nodes in the Spark cluster to
achieve task load balancing among computing nodes.

The task scheduling problem is described as follows: using
the task scheduling scheme, n mutually independent tasks are
assigned to m computing nodes for execution, as shown in
Figure 3. The goal of the distribution is that after these tasks
are allocated to the execution nodes, the task load of each node
is relatively balanced. By balancing the task load of each node
in the calculation process, the load balance of the entire cluster
is realized.

3.2 Ant Colony Algorithm and Simulated
Annealing Algorithm

1) Ant Colony Algorithm

The ant colony algorithm was originally used to solve
the TSP problem. In the calculation, the different
walking paths of different ants represent multiple feasible
solutions to the problem, and these path sets constitute

282 Engineering Intelligent Systems



J. WANG

Figure 3 Description of Task Allocation Problem.

the feasible solution set for the problem. The shorter the
path, the higher the concentration, the more ants on the
path. After multiple iterations, this positive feedback
effect will make the ants concentrate on the optimal path,
and the optimal solution of the problem is obtained at this
time.

Assuming that the number of cities is n, the number of
ants in the ant colony is m, the distance between cities
is denoted as di j , and the pheromone concentration of
the path between the two cities at time t is represented
by di j (t), and the initial pheromone concentration on the
path is d0. The number of ants is k, and the probability
of ant k transferring from city i to city j at time t is:

P K
i j (t) =

{
δi j (t)·θi j (t)·β∑

s∈ξ δi j (t)·θi j (t)·β S ∈ ξ

0 S �∈ ξ
(1)

ξ represents the next set of cities for ants to choose,
α is the pheromone heuristic factor, β is the expected
heuristic factor, and θ is the heuristic function.

In the ant colony algorithm, in order to avoid the situation
where the enlightening information has been covered,
the algorithm simulates the pheromone volatilization
mechanism in real life and introduces the pheromone
update idea, that is, the pheromone with fewer selected
paths will decrease, which makes most ants not select the
path again. When all the ants complete a week cycle, the
pheromone update is:

δi j (t + 1) = �δi j + (1 − p) · δi j (t) 0 < p ≤ 1 (2)

�δi j is the total concentration of pheromone increase on
the path (i, j), and its calculation method is:

�δi j =
m−1∑
k=0

�δk
i j (3)

2) Simulated annealing algorithm

The simulated annealing algorithm originated from the
metal cooling process during smelting, where the metal
is first heated, which causes drastic changes to the
internal particles, and then the internal particles are
cooled to stabilize them. When this idea is applied to the
optimal solution problem, the objective function is used

to simulate the degree of change of the particles, and the
parameters are used to represent the temperature, which
is the main idea of the simulated annealing algorithm.

The mathematical model of the simulated annealing
algorithm is: when the initial temperature is t , the objective
function value is calculated for the initial solution i and the
randomly generated new solution j . If the objective function
value of the new solution j is better than i , you replace i with
j , and perform this process on j . If the objective function
value of the new solution j is worse than i , the solution
is replaced with a certain probability, and the probability
decreases as the temperature parameter value t decreases.
After multiple iterations the above process, the final algorithm
will obtain a stable solution or the temperature parameter value
is reduced to a pre-set threshold. The solution at this time is
the approximate optimal solution obtained by the simulated
annealing algorithm.

In the simulated annealing algorithm, it is very important to
accept the new solution formed after the random perturbation
of the initial solution. After the simulated annealing algorithm
obtains the initial solution, the current solution is exchanged
randomly through permutation rules. If the fitness function
value of the new solution is lower than the original solution,
the new solution is accepted; otherwise, the new solution is
accepted according to the probability of being accepted.

Simulated annealing algorithm has a better effect in
searching complex regions, because its solving process makes
hasssssss the characteristics of parallelism. In addition, since
the search process of the simulated annealing algorithm is
random, the flexibility of the algorithm is enhanced, so that
the algorithm can better search for the global optimal solution.

3.3 Load Balancing Optimization Based on
Ant Colony-Simulated Annealing

1) Ant colony-simulated annealing fusion algorithm

Since the ant colony algorithm can easily fall into a
local optimal solution, in order to solve the problems
of the ant colony algorithm, this paper introduces the
random disturbance principle of the simulated annealing
algorithm. When the ant colony algorithm completes a
single population calculation and produces the optimal
solution for the current sub-group, we perform local

vol 29 no 5 September 2021 283



LOAD BALANCE OPTIMIZATION OF DISTRIBUTED MASSIVE DATABASE INFORMATION ACCEPTANCE AND PROCESSING INTHE INTERNET OFTHINGS SCENARIO

Figure 4 Algorithm Flow Chart.

random perturbation on the solution to produce a new
solution, and calculate the fitness function value of the
new solution at the same time. If the new solution is
better than the solution prior to the perturbation, we
accept the new solution as the optimal solution for the
current subgroup, and perform the global enhancement
of excellent path pheromone to speed up the overall
convergencespeed of the algorithm, while preventing the
ant colony algorithm from falling into the local optimal
solution. The flow of the fusion algorithm is shown in
Figure 4.

2) Load evaluation index

To solve the load balancing optimization problem,we use
the task node CPU usage Cm and the node task volume
as the standard to measure the current node load. The
calculation method is:

Loadi = M ·Cmi +N ·task pointi

/
m−1∑
i=0

taskpointi (4)

Loadi represents the load condition measurement index
of the i -th node, taskpointi represents the number of
tasks allocated to the node, and M and N are adjustable
parameters.

After all tasks have been allocated to the nodes, the
expected value H of the node to achieve load balancing
is calculated with:

H = 1

m

m−1∑
i=0

Loadi (5)

The calculation method for node load deviation error is
as follows:

Error = 1

m

[
m−1∑
i=0

(H − Loadi )
2

] 1
2

(6)

3) Pheromone update mechanism

This study uses a combination of local and global updates
to update the pheromone of each node; that is, first,
the node pheromone of each ant is updated locally,
and after all ants have completed a single optimization,
high-quality information is added to the better node,
thereby achieving global update and accelerating the
convergence speed.

Given the load balancing problem to be solved in this
paper, the larger the node load, the higher the current
resource occupancy rate of the node, the less available
resources, and the weaker computing power of the node.
Therefore, the calculation method of the ant k pheromone
increment is as follows:

�δk
i j = Q/Loadi (7)

After the ant completes a one-week cycle, the solution
is randomly disturbed, and a decision is made whether
to retain the new solution according to the Metropolis
criterion, and after the end of the current iteration,
additional pheromone is added to the optimal solution.

4) Ant colony-simulated annealing task allocation strategy

This paper applies the fusion algorithm of the ant colony
and simulated annealing algorithm to the optimization of
the Spark strategy for task allocation. The steps are as
follows:

Step 1: The user submits a Spark job to the cluster and
initializes the fusion algorithm parameter values.

Step 2: The cluster resource manager obtains the specific
situation of each node.

Step 3: After obtaining the current operating status,
health status and load information of each node,
the path is selected and the local pheromone is
updated.

284 Engineering Intelligent Systems



J. WANG

Step 4: After the ant colony completes the calculation,
the current local optimal solution is perturbed,
and a decision is made whether to form a new
solution according to the Metropolis criterion.

Step 5: After completing a single round of calculation,
an additional pheromone is included in the high-
quality solution to complete the global update.

Step 6: When the algorithm reaches the termination
criterion, the global optimal position is output,
and the task allocation sequence corresponding
to the solution is the optimal scheduling plan
for this time; otherwise, iterative calculation
continues.

Step 7: The cluster allocates tasks according to the
obtained task allocation plan.

4. EXPERIMENT AND ANALYSIS

4.1 Description of the Specific Experiment
Scheme

Based on a series of processes for load balancing optimization,
this part of the experiment consists of two phases: the
sampling optimization test experiment and the partition
strategy optimization experiment.

The prerequisite for the optimization of the division strategy
is the ability to obtain more accurate sampling results. The
sampling accuracy has a greater impact on the optimization of
the division strategy. The experiment is carried out to evaluate
the sampling method proposed in this paper and compare it
with approximate sampling and general random sampling.
Through the analysis of the sample S and the corresponding
sampling of the data set under different slope conditions, the
sampling results are compared, and the sampling accuracy is
evaluated by the root mean square error RMSE of the real
data.

In addition, the optimization experiment conducted to
evaluate the division strategy applies the method proposed
in this paper, the default Hash strategy, the dynamic division
strategy based on approximate sampling, and the XP strategy
comparison that does not consider particularly inclined
sampling and division processing. The word count experiment
is performed on the above, and the task execution time found
by determining the number of Reducers in this paper is
compared with the number of Reducers under other settings.

In this paper, both the sampling optimization and the final
partition strategy optimization take into account the extremely
high degree of data tilt, so in both parts of the experiment, a
specifically tilted data set needs to be used for verification.
First, we consider the data resources shared by Sogou Labs
externally, because it is easy to obtain and simple to operate
its statistics, so we choose Sogou T-Link from the corpus data
in the data resources. It includes a list of link relationships
corresponding to all documents in the Internet corpus, and
each row of data is relatively simple.

The full version of the above Sogou T-Link data set 2008
version is 25.9G. In the experiment, because of the limited
performance of the physical machine, the 10G data set was

selected. At the same time, the data set was counted through
the Word Count program in Hadoop, and it was found the
cardinality distribution of this data set is seriously skewed.
Among them, the number of keys based on the cardinality 0
to 8 is 36,972, and the number after the cardinality 40 is only
a single-digit size. Therefore, this data set is selected as a
special tilt data set for verification.

In addition, in order to verify the effects of different tilt
degrees on sampling optimization and partitioning strategy
optimization, this study simulates the data set according to
the conditions satisfied by the Zipf distribution.

4.2 Experimental Analysis of Sampling
Efficiency

After processing the experimental data, a data set com-
prising 1 million data elements is generated. During the
sampling test, it is divided into slices, and each slice uses
the sampling method proposed in this paper, approximate
sampling, and general random sampling at a sampling rate
of 0.002 determined by the sampling rate analysis in this
paper (combined with high frequency and general frequency
analysis). Sampling is performed, and the sampling results
of the three methods under different slope conditions are
evaluated and analyzed by the standard error RMSE.

Combined with the root mean square error, the results of
calculation and analysis of the data in the proposed sampling,
the approximate sampling, and the general random sampling
during the experiment are shown in Figure 5. It can be seen
from Figure 5 that this paper’s sampling method produces
better accuracy compared to the other two kinds of sampling.

In addition, the experiment compared the time efficiency
of the three sampling methods using the same order of
magnitude (1G) and four different inclination levels, and the
time efficiency of different orders of magnitude data on the
same inclination level (this time uses Sogou T-Link data, the
order of magnitude is 2G∼10G). The comparison results of
the two cases are shown in Figure 6 and Figure 7.

The data results in Figure 6 indicate that when the data set
is at different degrees of inclination, the sampling method
proposed in this paper is more efficient in terms of time
compared with the other two sampling methods when dealing
with the intermediate data set sample generated in the big data
environment. From the analysis of the data results in Figure 6
and Figure 7, it can be seen that the sampling method proposed
in this paper can improve time efficiency, reducing the overall
time overhead.

4.3 Comparison of Performance Results of
Partitioning Strategies

In order to comprehensively verify the rationality of the
sampling rate 0.002 and the advantages of the division strategy
proposed in this paper, the Sogou T-Link data set is sampled;
the sampling rate is 0.002 with 0.0005 intervals. The
experimental results and comparison are shown in Figure 8.

It can be concluded from Figure 8 that the division strategy
in this paper has advantages in terms of the efficiency of task
execution. In addition, the sampling rate obtained from the

vol 29 no 5 September 2021 285



LOAD BALANCE OPTIMIZATION OF DISTRIBUTED MASSIVE DATABASE INFORMATION ACCEPTANCE AND PROCESSING INTHE INTERNET OFTHINGS SCENARIO

Figure 5 Data Analysis Results for Three Sampling Methods.

Figure 6 The Task Completion Time of the Three Methods With Different Inclination Degrees Under the Same Order of Magnitude.

Figure 7 Different Orders of Magnitude Task Completion Time for the Three Methods at the Same Tilt.

analysis of sample S optimizes the load balancing technology
and also improves the efficiency of cluster operations.

In order to verify the optimization of the number of
Reducers proposed in this paper for load balancing, a
simulated data set (capacity 4G, gradient 0.2) is selected for
experimentation, and the number of Reducers is artificially set
at 2–15. Figure 9 shows the comparison of the task completion
time of the experiment. It can be seen from Figure 9 that
the determination of the number of Reducers in this article

is effective for the load balancing effect, which has great
advantages over artificially setting the number of Reducers.

In order to verify the superiority of the proposed division
strategy, a simulation data set (3G) is used to compare
and analyze the job completion time data of the four
division strategies in the cluster environment. In this round of
experiments, the value of different data tilt degrees range from
0 to 1; the statistical results are shown in Figure 10. The data
results presented in Figure 10 show that the proposed division

286 Engineering Intelligent Systems



J. WANG

Figure 8 Task Completion Time of Four Division Strategies at Different Sampling Rates.

Figure 9 Task Completion Time of The Four Division Strategies Under Different Reducer Number Settings.

Figure 10 Job Completion Time of The Four Division Strategies Under The Condition of Different Inclination Data Sets.

strategy has obvious advantages in terms of time efficiency
compared with other division strategies.

Using data slopes of 0.1 and 0.9, and the sampling of the
data scale from small to large, the task completion times of the
four division strategies are compared. These four strategies
are the default hash algorithm, the dynamic partition strategy
based on approximate sampling, the XP strategy without

considering the specifically inclined sampling partition, and
the dynamic partition algorithm based on sampling and load
feedback optimization presented in this paper. The results are
shown in Figure 11 and Figure 12 for comparison. The results
presented in these figures indicate the significant advantages
of the division strategy.

vol 29 no 5 September 2021 287



LOAD BALANCE OPTIMIZATION OF DISTRIBUTED MASSIVE DATABASE INFORMATION ACCEPTANCE AND PROCESSING INTHE INTERNET OFTHINGS SCENARIO

Figure 11 Completion Time of The Four Division Strategies for Different Data Sets (Inclination of 0.15).

Figure 12 Completion Time of The Four Division Strategies for Different Data Sets (Inclination 0.95).

5. CONCLUSION

Spark is currently one of the mainstream frameworks for
distributed computing, the performance of which affects the
efficiency of big data processing and analysis. The paper
examines and analyzes the load imbalance problem of Spark
clusters, and proposes an optimized strategy for Spark task
scheduling. This strategy has a demonstrable optimization
effect on the load balancing of the Spark cluster, while
shortening the overall running time of the task and improving
the computing efficiency. Analysis results show that load
balancing optimization on the Reduce side requires a series
of processes to complete; in particular, the intermediate data
generated on the Map side must be rationalized to improve
the load balancing efficiency on the Reduce side. In addition,
the load balancing on the Reduce side is also related to itself,
and the determination of the number of task nodes plays a vital
role in load balancing. For the processing of intermediate data,
this paper combines sampling scale analysis and optimization
with sampling method design optimization. The number of
Reducers on the Reduce side is optimized according to real-
time data and node performance. The optimization work of the
two aspects is combined, and the optimal mapping between the

intermediate data and the Reducer is established through the
formulation of a dynamic division strategy which ensures
the optimal realization of load balancing. The experimental
results show that the load balancing strategy significantly
improves the parallel computing power of Map Reduce in
a cluster environment.

ACKNOWLEDGMENTS

This work was supported by the Sichuan Provincial Depart-
ment of Education Foundation under grant no. JG2018-
911, Higher education talent training quality and teaching
reform project “Exploration and practice of innovative and
entrepreneurial talent training mode for college students based
on studio task driven”.

REFERENCES

1. Zhang Y., Liu S. A real-time distributed cluster storage
optimization for massive data in internet of multimedia things.
Multimedia Tools and Applications, 2019, 78(5): 5479–5492.

288 Engineering Intelligent Systems



J. WANG

2. Tu L., Liu S., Wang Y., et al. An optimized cluster storage
method for real-time big data in Internet of Things. The Journal
of Supercomputing, 2020, 76(7): 5175–5191.

3. Hu W., Li H., Yao W., et al. Energy optimization for WSN
in ubiquitous power internet of things. International Journal of
Computers Communications & Control, 2019, 14(4): 503–517.

4. Zhang K., Zhu Y., Maharjan S., et al. Edge intelligence and
blockchain empowered 5G beyond for the industrial Internet of
Things. IEEE Network, 2019, 33(5): 12–19.

5. Liang W., Tang M., Long J., et al. A secure fabric blockchain-
based data transmission technique for industrial Internet-of-
Things. IEEE Transactions on Industrial Informatics, 2019,
15(6): 3582–3592.

6. Qiu T., Chi J., Zhou X., et al. Edge computing in industrial
internet of things: Architecture, advances and challenges.
IEEE Communications Surveys & Tutorials, 2020, 22(4):
2462–2488.

7. Savazzi S., Nicoli M., Rampa V. Federated learning with
cooperating devices: A consensus approach for massive
IoT networks. IEEE Internet of Things Journal, 2020, 7(5):
4641–4654.

8. Cao B., Li Y., Zhang L., et al. When Internet of Things
meets blockchain: Challenges in distributed consensus. IEEE
Network, 2019, 33(6): 133–139.

9. Savari G. F., Krishnasamy V., Sathik J., et al. Internet of Things
based real-time electric vehicle load forecasting and charging
station recommendation. ISA transactions, 2020, 97: 431–447.

10. Liu Y. H., Zhang S. Information security and storage of Internet
of Things based on block chains. Future Generation Computer
Systems, 2020, 106: 296–303.

11. Cheng L., Kotoulas S., Liu Q., et al. Load-balancing distributed
outer joins through operator decomposition. Journal of Parallel
and Distributed Computing, 2019, 132: 21–35.

12. Liu M., Yu F. R., Teng Y., et al. Performance optimization for
blockchain-enabled industrial Internet of Things (IIoT) systems:
A deep reinforcement learning approach. IEEE Transactions on
Industrial Informatics, 2019, 15(6): 3559–3570.

13. ElHalawany B. M., Hashad O., Wu K., et al. Uplink resource al-
location for multi-cluster internet-of-things deployment under-
laying cellular networks. Mobile Networks and Applications,
2020, 25(1): 300–313.

14. Lyu Y., Yin P. Internet of Things transmission and network re-
liability in complex environment. Computer Communications,
2020, 150: 757–763.

15. Haji L. M., Ahmad O. M., Zeebaree S R. M., et al. Impact of
cloud computing and internet of things on the future internet.
Technology Reports of Kansai University, 2020, 62(5): 2179–
2190.

16. Djellabi B., Younis M., Amad M. Effective peer-to-peer design
for supporting range query in Internet of Things applications.
Computer Communications, 2020, 150: 506–518.

17. Qadri Y. A., Nauman A., Zikria Y. B., et al. The Future
of Healthcare Internet of Things: A Survey of Emerging
Technologies. IEEE Communications Surveys & Tutorials,
2020, 22(2): 1121–1167.

18. Awin F. A., Alginahi Y. M., Abdel-Raheem E., et al. Technical
issues on cognitive radio-based Internet of Things systems: A
survey. IEEE Access, 2019, 7: 97887–97908.

19. Mei G., Xu N., Qin J., et al. A Survey of Internet of Things
(IoT) for Geohazard Prevention: Applications, Technologies,
and Challenges. IEEE Internet of Things Journal, 2019, 7(5):
4371–4386.

20. Xu Y., Xu W., Wang Z., et al. Load balancing for ultradense
networks: A deep reinforcement learning-based approach.
IEEE Internet of Things Journal, 2019, 6(6): 9399–9412.

vol 29 no 5 September 2021 289




