
Eng Int Syst (2022) 2: 115–126
© 2022 CRL Publishing Ltd Engineering

Intelligent Systems

Emergency Resource Allocation
and Scheduling in Differential
Distributed Storage System

Liang Chen∗

Registrar’s Office, Changsha Normal University, Changsha 410100, China

In order to address the problems of the high energy consumption and poor real-time performance of traditional emergency resource allocation and
scheduling methods, an emergency resource allocation and scheduling method for distributed storage systems is proposed. With the proposed method,
task requests are prioritized and priority queues are generated. The ant colony algorithm and the particle swarm algorithm are applied for efficient
resource allocation, the selection of an appropriate scheduling strategy, and allocation of emergency resources. The experimental results show that
the proposed method has strong real-time performance and can reduce energy consumption. Hence, it is highly suitable for emergency resource
allocation and scheduling.

Keywords: Differential Distribution, Inventory System, Resource Allocation, Dispatching Method

1. INTRODUCTION

With the advent of the big data era, the total amount
of global data being generated is showing unprecedented
growth, requiring the rapid expansion of data centers. With
the emergence of cloud computing and big data, a high-
performance computing system is required comprising a
large-scale cluster system. Its computing and communication
operations are generally completed heterogeneously, and
involve a heterogeneous processor, heterogeneous memory
and heterogeneous communication network. With the
continuous acceleration of CPU processing speed, the gap
between the computing system and the computer storage
system continues to widen (Chong et al., 2018; Al-Haija
et al., 2019). Over the past decade, high-performance
computing, cloud computing and big data have driven the
development of storage systems. Through hardware data man-
agement technology and hardware acceleration technology,
the performance gap among computing system, computer and
storage system is narrowed, and the problem that the data

∗Corresponding Author Email: cliang0816@163.com

generated by computer system exceeds the data processed
by computer storage system is improved. Moreover, the
development of high-performance multi-core computing has
changed from simple large-scale parallel computing to one
that has high efficiency, high reliability and low energy
consumption. Therefore, a lot of research work begins with
software storage management technology, combining data
distribution technology and task scheduling technology to
improve the efficiency and reliability of high-performance
computers, and reduce the overall energy consumption of the
system (Feng et al., 2018).

The common storage system stores big data by means
of special servers and disk arrays. However, if the storage
load of servers in the storage system is too large, this may
cause a bottleneck problem for the storage system (Naidu
et al., 2018; Bramasta et al., 2019). This kind of storage
system cannot meet the storage requirements of big data. In
order to be able to store big data, a differential distributed
storage system is adopted. Unlike the network storage
system, when the distributed storage system stores data,
it separates the data processing from the storage process,

vol 30 no 2 March 2022 115

EMERGENCY RESOURCE ALLOCATION AND SCHEDULING IN DIFFERENTIAL DISTRIBUTED STORAGE SYSTEM

and effectively stores the big data. Distributed storage
system emergency resource scheduling usually refers to the
allocation of emergency resources to each resource demand
point after an emergency occurs. The current emergency
resource scheduling method cannot efficiently schedule the
resources contained in the storage system. The emergency
resource task scheduling and data distribution technology of
differential distributed storage system includes two parts: task
scheduling and data distribution. This requires scheduling
tasks on the right processor and data on the right memory, so
as to improve performance, reduce latency and meet resource
constraints. At present, the scale of high-performance systems
is constantly increasing, and the structure scale is quite
different. At the same time, the application scale is constantly
expanding, its task parallel mode is different, and the data
set is huge. These characteristics increase the complexity
of data allocation and task scheduling technology, making it
difficult to improve the throughput of the system. Moreover,
the resource allocation scheduling method has the problems
of high energy consumption and poor real-time performance.
Many experts have studied the emergency resource scheduling
method of distributed storage systems to find an approach that
will enable each resource demand point to receive emergency
resources quickly.

Hammuda et al. (2018) proposed to establish a multi-
source and multi-objective emergency resource scheduling
model. This method takes the shortest emergency disposal
time as the planning goal. The sum of emergency resource
transportation and emergency engineering construction time
must be less than the time when pollutants diffuse to
the emergency disposal space location, and the number of
comprehensive dispatching resources of multiple emergency
resource warehouses must meet the disposal demand as the
constraint condition. When the time of emergency resource
delivery and loading and unloading is fixed, The number of
resources to be dispatched in each warehouse and the time
required for resources to arrive at the emergency disposal
space are calculated. Dijkstra algorithm is used to select
the optimal path of emergency resource distribution in real
time, which improves the execution efficiency of emergency
management. However, this method has the problems of poor
real-time resource scheduling ability and untimely scheduling
of emergency resources. In reference, Xu et al., (2018) an
improved resource scheduling algorithm is proposed for the
cloud storage environment. In this method, the triangular
fuzzy number analytic hierarchy process is used to conduct a
comprehensive analysis of the factors that influence schedul-
ing. A judgment matrix of storage nodes is obtained, which is
subsequently used to construct the genetic algorithm objective
function. Then, the simple genetic algorithm is innovated in
terms of solution coding, cross mutation operation and lethal
chromosome self-improvement, making it suitable for large-
scale resource scheduling in the cloud storage environment
(Dzhurik et al., 2019; Phuong et al., 2019). This method
can effectively schedule emergency resources, but has poor
reliability. In reference, Fang et al., (2019) a multi-objective
two-stage temporary distribution center location and emer-
gency resource scheduling model are established to minimize
the total cost and total time. The relative robust optimization
method is used to create the model, and the interval estimation

is used to describe the uncertain factors, and the robustness
and optimality of the model are introduced. The model
can effectively solve the problem of emergency resource
scheduling network construction when there is uncertainty
of demand, and can ensure the robustness of emergency
decision-making. However, this method requires high energy
consumption which is not conducive to practical application.

Given the above problems considered above, this paper
puts forward a proposal for an emergency resource allocation
and scheduling method for a differential distributed storage
system. The resource scheduling program used in this
method adopts dynamic management resource allocation
mechanism. According to the scheduling request, it sets
the grade score for the emergency resource demand. By
introducing the potential energy method to optimize the
priority, it makes a reasonable arrangement for the queue data
waiting for allocation. Combined with ant colony algorithm
and particle swarm algorithm, the corresponding resource
allocation container is selected to complete the allocation of
emergency resources. The experimental results show that
the method has better real-time performance, improves the
execution efficiency of management in practical operation,
improves the scheme of emergency resource allocation and
scheduling, and is suitable for emergency resource scheduling.

2. DESIGN OF EMERGENCY
RESOURCE ALLOCATION AND
SCHEDULING METHOD FOR
DIFFERENTIAL DISTRIBUTED
STORAGE SYSTEM

Most of the differential distributed storage systems are based
on the development and operation of the Hadoop platform.
For emergency resource allocation scheduling, we can refer
to the resource scheduler instead of the original task scheduler
to achieve the unified allocation of emergency resources.

2.1 Resource Scheduler Reference

The differential distribution storage system supports the
management and allocation of two different resource types:
memory and CPU. The resource scheduler adopts the
Dynamic management of resource allocation mechanism
to submit requests for resource allocation by processing
applications.

When Node Manager (NM) registers with Resource
Manager (RM) through the Resource Tracker protocol to
report node status, the total amount of resources available in
the node is submitted. In the differential distributed system,
the default memory in each NM is 8 GB and has 8 virtual
CPU cores. The NM periodic landlord moves to RM to issue a
request and report resource information, while the application
requests resources from RM via Resource Request, a request
containing the following fields:

(1) Priority: Represents a resource priority (O priority is
the largest, and the greater the number, the smaller the
priority).

116 Engineering Intelligent Systems

L. CHEN

Figure 1 Resource scheduler allocation process.

(2) Resource Name: Represents the location of the requested
resource (*: indicates an arbitrary location resource;
/Rack-name: Applies for a resource at any node on this
rack; /Host-name: Applies for a resource at a node).

(3) Capability: Specification of the resource, including the
amount of the two resources mentioned above (e.g.: 2 GB
memory, a virtual CPU core).

(4) Num-container: The number of Containers requested to
meet the above resource specification description (Liang
et al., 2019).

(5) Relax_ locality: Whether to force locality.

Submits multiple resource requests based on the number of
copies of data and responds according to the order of local jobs
and arbitrary locations when responding to Resource Request
(Heinonen et al., 2019). In this way, a response will result in
a greater number of requests being withdrawn. The scheduler
will schedule according to a series of conditions, starting with
the selection of queues. These must be considered by the
scheduler to determine the queue because the queue has two
attributes:

(1) Minimum capacity: The scheduler needs to work hard
to meet the value of the minimum capacity. In a
multi-queue environment, the scheduler selects the queue
with the largest difference between actual and minimum
capacity of the queue, assigning resources to these
queues to ensure the efficiency of job execution for
these queues. When a queue is idling, its resources are
allocated to other queues for other queue applications
until this queue again submits a request and applies for
resources (Amine, 2019).

(2) Maximum capacity: The queue also sets a maximum
capacity when resources are tight. The maximum
capacity value is the queue hardness requirement value.
At no time can the queue’s share of resources exceed this

value. In general, this value is not set to improve the
efficiency of the queue, so that a busier queue is able
to fully use the cluster resource (occupying 100% of
the resource) when the other queues are not working,
and then release it stepwise when the other queues are
applied.

Resource manager is hereinafter referred to as RM, node
manager is hereinafter referred to as NM, and application
master is hereinafter referred to as AM.

In a queue, the queue user submits the application, and the
scheduler responds to the resource request depending on the
resource situation and the applicant’s request (Fu et al., 2019).
The new resource scheduler implements a two-tier scheduling
mechanism. In the first layer, the above-mentioned Resource
Request is submitted to the RM by the application, and the
scheduler’s only job is to determine whether to respond to
the Resource Request submitted by the application and the
resource situation of each node, and to initiate one or more
than one Container on the node if there is no response.

In a differential distributed storage system, the allocation
of resources is done with the following steps:

Step 1: NM uses heartbeat information to report node status
to RM.
Step 2: The Resource Tracker service in RM returns
a response that contains information to start and release
Container.
Step 3: The service forwards the NODE_UPDATE event to
the scheduler.
Step 4: The scheduler relabels the released resources as
available, and then assigns the resources on the node to the
application according to certain policies.
Step 5: AM sends heartbeat messages to RM.
Step 6: RM responds to AM by sending the allocated
Container.
Step 7: AM assigns Container to its own internal tasks.

The resource allocation strategy is shown in Figure 1.

vol 30 no 2 March 2022 117

EMERGENCY RESOURCE ALLOCATION AND SCHEDULING IN DIFFERENTIAL DISTRIBUTED STORAGE SYSTEM

Figure 2 Resource scheduling process.

Figure 1 depicts the resource allocation strategy for the
current resource scheduler. When AMA applies to the
Scheduler component in RM for Container, assuming that
the current location node Node2 and the resources available
in Node2 meet the those resources required for AMA;
the scheduler allocates the resources in Node2 to AMA.
Compared to Node2, Node3 has a smaller resource load and
faster CPU processing speed, so it is more reasonable to
allocate resources to AMA in Node3.

2.2 Allocation of Priority

As the implementer of the emergency resource allocation
scheduling method of the differential distributed storage
system, the resource scheduler is used depending on the
priority of resource allocation. The workflow of the resource
scheduler is shown in Figure 2.

Firstly, after the scheduler obtains the request from different
resource levels, the priority scheduling module produces a
priority queue. Then, the resource allocation module selects
the appropriate allocation source and allocation purpose
for the resources in the queue. Finally, the scheduling
module completes the emergency resource scheduling work
for multiple emergency resources according to different
levels. Therefore, the prioritization of resource allocation
is important. It is very common for multiple potential
failures to occur simultaneously in different distributed
storage systems, so how to allocate emergency resources
appropriately becomes a key problem. A more reasonable
approach is to allocate more resources to tasks with greater
urgency according to the crisis level (Yang et al., 2019). When
allocating resources, it is necessary to establish the relevant
severity threshold to determine whether a failure has occurred,
and the severity of the failure. This score enables critical tasks
to be prioritized according to the level of severity, in order to
facilitate subsequent resource allocation.

The percentage of resource allocation is also an important
factor in scoring the severity of failure, in addition to the
severity level as the evaluation standard. If the severity of
the failure is high, the score of the task is high, and more
resources need to be allocated, then the remaining resources
will be reduced. The relevant severity score was calculated as
follows:

γ (i) = 1 − x(i)

K
(1)

In formula (1), x(i) represents the percentage of resources
allocated, K Indicates that the failure is the severity of the
event, γ (i) represents related severity scores.

After setting the relevant severity score for the execution
task, the system can distinguish the different degrees of crisis
according to the different scores. Without taking into account
the percentage allocation, the higher the severity, the greater
the scores assigned to the higher the risky tasks. In order to
prioritize the allocation of resources to higher-level missions,
priority teams are used to prioritize the allocation of work.
The queue takes into account not only the task-related severity
score, but also the crisis status of other tasks. The task queues
are sorted in situations where the overall priority processing
scores are higher and other crisis states are more severe.

The concept of a priority queue is introduced for the
purpose of allocating emergency resources more efficiently.
There are two kinds of tasks in differential distributed storage
system: one is the normal read and write task; the other
is the emergency task. The user’s normal read-write tasks
are added to the task queue in the original “first-come-first-
served” manner, while the emergency task needs to be added
to the priority queue in order of priority and then to the work
queue in the same order as in the priority queue. Using the on-
duty process to assign queue processes, the system is regularly
scanned for abnormal data, multiple tasks are added to the
priority queue according to the priority level, and finally the
priority queue is followed. The work queue is joined in order

118 Engineering Intelligent Systems

L. CHEN

to wait for the resource scheduler to schedule. In the priority
queue method, the potential energy method is used to parse
the priority queue data entry time. This method is usually
used to determine the complexity of the allocation, and in the
emergency resource allocation method, the task is divided into
general task and emergency task. The potential energy method
is introduced to optimize the entry time of field priority queue
data to improve operational efficiency.

Assume that a priority queue data needs to perform n
operations, for each i(i = 1, 2 . . . n), make ai the actual
priority of the i task level. The priority queue operates the
potential energy φi−1 and φi by potential energy methods.
Therefore, the operation return time of the potential energy
function i is represented as follows:

bi = ai + φi − φi−1(i = 1, 2 . . . n) (2)

According to Equation (2), the total time of the n operation
is:

n∑
i=1

ai =
n∑

i=1

(bi − φi + φi−1) =
n∑

i=1

bi − φn + φ0 (3)

In formula, φ0 generally represents 0, and φi ≥ 0, thus:

n∑
i=1

ai ≤
n∑

i=1

bi (i = 1, 2 . . . n) (4)

2.3 Emergency Resource Scheduling Based
on Ant Colony Algorithm and Particle
Swarm Algorithm

2.3.1 Resource Scheduling Based on
Ant Colony Algorithm

Ant represents the scheduler in the ant algorithm and is
responsible for allocating resources to the container of the
applied resources to obtain the resource allocation scheme
(Zhang et al., 2019).

Firstly, the pheromone is initialized, and in the differential
distributed storage system, whether it is Map or Reduce,
factors such as CPU rate, memory volume and load of the
node have a crucial effect on the execution of the task (Zhang
et al., 2020). In general, tasks are not assigned to nodes with
low CPU execution speed, small memory, and heavy load,
but should begin with high performance nodes, such as high
CPU rate, low load, and low corresponding job failure rate,
so as to reduce the task execution time. In the differential
distributed storage system resource scheduling framework,
AM is responsible for job start-up and monitoring, RM is
responsible for the management and allocation of all resources
in the cluster, and monitors, manages the status of AM on
each node, communication between AM and RM through a
heartbeat transmission mechanism. This paper refers to the
resource scheduler, through which the node CPU rate, job
failure record, memory capacity and load information are
obtained from NM, the execution ability of each container
on the node is calculated, and the result is stored in the
pheromone matrix in the form of pheromone value, complete
the initialization of pheromone matrix Qn×m = (qin)m .

Suppose qin represents the execution capability of container
En on resources ri . It is calculated by the CPU rate of the node,
the memory, the relative weight of the job failure records of
the container, and the resource ri remaining utilization, the
expression is:

qin =
(

cpuVi∑m
i=1

cpuVi
m

+ Wi∑m
i=1

Wi
m

+ α

f ai ln otein

)
∗ (1 − Li)

(5)

Li = Wi − resWi

Wi
(6)

In the formula, f ai ln otein show En failing record of
the job on the ri node, cpuVi represents the CPU rate, W
represents memory capacity, α represents the weight value of
the job failure record to which the container belongs. After the
initialization of the pheromone is completed, the state transfer
probability needs to be calculated. In an iterative process,
the allocation of resources is accomplished by multiple “node
container” operations. The details are as follows:

Suppose the ant ak(0 ≤ k ≤ q), k indicates the number of
ants. Random selection of node resources ri(0 ≤ i ≤ m). The
update state transition probability matrix of ak is Dm×a . Select
the container with probability din(0 ≤ n ≤ a). Multiple
choices may be made if the termination condition is not met.
For example, suppose the container selected by the current
node resource R is En , and (ri , En) > 0, then ri allocates
resources for En and modifies matrix elements at the same
time xin = 1. Conversely, the container is re-selected until
the constraints are met. The transfer probability for ak to
select container En at time t is:

din(t + 1) =
{ qin (t)|Enri |∑

x,y=1 qin [|Enri |−Da] if yin = 1

0, else
(7)

In the formula, x, y represents a matrix element, the
constraints are:

n∑
i=0

i∑
n=0

xin = t (8)

n∑
i=0

i∑
n=0

yin = 0 (9)

Of which,
∑n

i=0 yin = 0, when the above conditions are
met, the allocation of resources ri has been completed.

Every time ak selects a container, if container En and
resource ri , the larger the corresponding pheromone is qin , the
greater the probability that the container is selected, which to
some extent reduces the progress of clustered job sets.

When the constraints are met, the ants ak end one iteration.
According to the following formula, the objective function
value of the current solution is:

Fk =
n∑

i=0

[ϑi ∗ gi] (10)

ϕi =
resWhi

resTotalhi∑n
i=0

resWhi
resTotalhi

(11)

vol 30 no 2 March 2022 119

EMERGENCY RESOURCE ALLOCATION AND SCHEDULING IN DIFFERENTIAL DISTRIBUTED STORAGE SYSTEM

In the formula, Fk represents an objective function, the
global optimal solution for emergency resource allocation,
gi represents operational progress ϑi is the task hi progress
weight value, which is calculated by Equation (11).

The current solution is compared with both the local optimal
solution and the global optimal solution. If the current solution
is superior to the local optimal solution and the global optimal
solution, the latter two solutions are updated with the current
solution; otherwise, they are not updated. When the number
of iterations is less than 8, the volatilization coefficient is set to
a fixed value of 0.3. When the number of iterations is greater
than or equal to 8, the adaptive pheromone update mechanism
is adopted. If the change of the global optimal solution in
8 consecutive iterations tends to be stable, the pheromone
volatilization coefficient is appropriately increased, whereas
the pheromone volatilization coefficient is reduced. These
updates are only for the resource allocation included in the
solution obtained from this iteration.

After obtaining 8 consecutive job progress Fk , the standard
deviation for calculating the objective function ε is:

ε =
√√√√ 1

n − 1

n∑
q=1

[
F (dk)q − F (dk)q

]2
(12)

Substituting standard deviation ε into Equation (13), the
calculated dynamic evaporation coefficient ξa is:

ξa = arctan (ε)
π
2

(13)

When the standard deviation of the calculated objective
function is small, the algorithm’s solution finding process
tends to be stable. When the Volatilization Coefficient ξa

of dynamic pheromone is large (0 < ξa < 1), the search
for solutions fluctuates. The adaptive pheromone update
mechanism is used to improve the ants’ global search ability
by adjusting the volatile amount of pheromone to prevent the
ants from falling into the local optimal solution.

The volatile coefficient of dynamic information is used to
update the pheromone, namely:

qin(t + 1) =
{
(1 − ξa)qin(t), f lagn = P

(1 − ξa)qin(t)+ � qin(t), f lagn = Z

(14)

qin = resW En∑n
i=0 resWi

(15)

In the formula, f lagn indicates the state of container En ,
and qin indicates the increment of pheromone, P represents
the state of the container’s requested resource of zero
represents the state of the container’s requested resource of
zero. Conversely, the state of the container is Z , if f lagn = Z ,
the update of pheromone includes not only the volatilization of
pheromone, but also the increase of pheromone accumulation.

Ant colony algorithms tend to choose large containers
when allocating resources. When allocating cluster resources,
if the free resources are allocated to the small container,
a large amount of small-capacity resource fragments will
be generated, and the large capacity container cannot find

adequate resources to meet the conditions, resulting in a
waste of resources. The pheromone update process shown
in Equation (14) and Equation (15) can avoid the above
problems, so that the resources are allocated to the container
to the maximum extent possible by the cluster performance to
implement the emergency resource scheduling.

2.3.2 Optimization of Resource Allocation
Based on PSO

The particle swarm algorithm is derived from random
unraveling to find the optimal solution by iteration. In
this paper, based on the ant algorithm, the particle swarm
optimization algorithm is used (Zheng, 2019).

Suppose there are m particles in the emergency resource
allocation group searching in the c-dimensional space. In step
v, the position vector of the j particle in the c-dimensional
space is xvj = {xvj1, xvj2, . . . , xvjc}, j = 1, 2, . . .m, adapta-
tion function defines emergency time according to relevant
requirements T vj = T (Xvj), the position of the best solution
found by the j -th particle itself is Qv

j = {qvj1, qvj2, . . . , qvjm},
Uv = {uvj1, uvj2, . . . , uvjm } for the best possible solution for the
entire population, the velocity corresponding to each particle
is Svj = {svj1, svj1, . . . , svjm }. The updated velocity and position
of the particle are:

Sv+1
j =
 svj1 + d1ψ(Q

v
j − Xvj)+ d2λ(U

v
j − Xvj) (16)

Xv+1
j = Xvj + τνv+1

j (17)

In the formula,
 is inertial factors, d1, d2 represents group
cognitive coefficient,ψ, λ represents the uniform distribution
coefficient of random numbers in an interval. The PSO
calculation flow is shown in Figure 3.

3. SIMULATION EXPERIMENTAL
RESEARCH

3.1 Experimental Scheme

In order to verify the effectiveness of this method, simulation
experiments are carried out. The method is evaluated by
the benchmark program of dspstone. First, the benchmark
program is compiled by GCC, and then the task graph and
read / write data set are extracted from GCC. The compilation
and extraction process comprises three stages: first, compile
the original code with - fprofile generate; second, execute
the binary data set generated after the compilation of the
corresponding case; finally, the source code is optimized by
profile guided to a feasible absint (- fprofile use fabsinth)
for recompilation. Pass - absinth - BBS traverses all RTL
expressions in each basic block. For each expression, pass
absinth BBS determines whether it is an instruction, and
performs an initial execution for each instruction. Then, the
task graph and access data set are put into the simulator.
The number of tasks, dependent sides, and data sets for the
benchmark are shown in Table 1.

When extracting task graph from GCC to build MDFG of
weight, it is necessary to design the parameters shown in

120 Engineering Intelligent Systems

L. CHEN

Figure 3 Flowchart of particle swarm algorithm.

Table 1 DSP stone benchmark test procedure.

Numbering 1 2 3 4 5
Number of tasks 8 13 17 29 178
Number of edges 7 15 21 38 146
data 12 24 32 48 180
C̄d 6 KB 8 KB 4 KB 5 KB 7 KB
ETR 1.1 1.25 0.95 1.75 1.2
β 0.2 0.5 0.8 0.45 1.0

Table 1 as required. Task execution time: this is a basic
heterogeneous parameter based on processor speed. The
higher the β value is, the more time a task is executed on
different processors. Setting T̄d is the average time to map
tasks, in resource allocation scheduling. Then the average
execution time T̄i of task qi is randomly selected from mean
and distribution

[
0, 2T̄d

]
. Accordingly, the execution time of

each task on qi processor W j must conform to the expression
range of the formula given below:(

1 − β

2

)
T̄i ≤ U(qi ,W j) ≤

(
1 + β

2

)
T̄i (18)

In the formula, U(qi ,W j) is the uniform random variable

with the mean value of T̄i and the variance of β T̄i , i and j are
constants.

The table ETR indicates the energy consumption time ratio,
which is the ratio of the average energy consumption and
the average execution time of the MDFG. Set B̄ j to represent
the scaling of processor W j is the energy consumption. Then
the energy consumption of task qi on processor W j is:

B(qi ,W j) = B̄ j × U(qi ,W j)× ET R (19)

Suppose the number of tasks in MDFG is Q, the number
of dependent edges in MDFG is V , then the data required to
perform a given task diagram is:

vol 30 no 2 March 2022 121

EMERGENCY RESOURCE ALLOCATION AND SCHEDULING IN DIFFERENTIAL DISTRIBUTED STORAGE SYSTEM

Figure 4 Experimental structure model.

Md = χ ×
√

Q ×
√

V (20)

In the formula, χ represents a data parameter.
C̄d in the table represents the average number of each

required in MDFG, and is randomly given in the resource
allocation scheduling method. For a data r , the data size
parameter is randomly selected from the uniform distribution
[0, 2]. For a data, the data size parameter is randomly selected
from a uniform distribution. Therefore, the data r size of each
data is:

d (r) = η × C̄d (21)

3.2 Experimental Environment and
Parameter Setting

In the experiment conducted to test the performance of various
emergency resource allocation scheduling methods for
differential distributed storage systems, the time, energy

consumption, real-time, load equilibrium of resource
scheduling are factors used as performance standards in the
experiment which compares the reference [5] method, the
reference [6] method and the reference [7] method. Based
on the performance criteria for comparison, two sets of
experiments are required, in which all the benchmark test
programs are run according to the experimental structure
model shown in Figure 4.

The structure model shown in the figure consists of five
heterogeneous processors. The parameter set of the structure
model is obtained from ARM7 and MSP430 using the CACTI
tool. The specific parameter settings are shown in Table 2.

In Table 2 and the structural model in Figure 3, the
experimental results for access time and access energy
consumption of the model unit data in different processors
have been given. All experiments are performed on the
computer of the Linux system, which has a memory of
2 GB.

122 Engineering Intelligent Systems

L. CHEN

Table 2 Parameters of experimental structure model.

Parameter Frequency (MHz) Local Memory Size (KB) Prolonged (ms) Energy Consumption (mJ)
Core1 64 128 1.25 1.39
Core2 30 64 2.36 1.22
Core3 15 32 2.11 1.66
Core4 12 16 1.25 0.73
Core5 8 8 0.93 2.18

Table 3 Comparison of energy consumption results obtained by different methods used for resource allocation and scheduling.

Method Experiment
Number

Constraint
Time / min

Energy Con-
sumption / J

Energy
Consumption
Ratio / %

Literature [5] 1 20 196 2.3
2 25 236 2.6
3 30 275 1.5
4 35 294 3.1
5 40 - -

Literature [6] 1 20 177 3.5
2 25 196 2.3
3 30 225 2.7
4 35 263 1.9
5 40 298 3.4

Literature [7] 1 20 185 2.2
2 25 199 2.5
3 30 220 2.6
4 35 241 1.8
5 40 287 2.9

The method of
this paper

1 20 112 7.6

2 25 93 8.3
3 30 132 6.9
4 35 89 8.9
5 40 97 7.7

3.3 Analysis of Experimental Results

3.3.1 Energy Consumption Analysis of Emergency
Resource Allocation for Different Methods

To verify the feasibility of the proposed method, the exper-
iments compared the energy consumption of the reference
[5] method, the reference [6] method, and the reference [7]
method in carrying out the emergency resource allocation.
The lower the energy consumption, the more efficient is the
method. The results are shown in Table 3.

The energy consumption rate shown in the table is the
reduction value of the initial energy consumption compared
with the stable energy consumption of the resource allocation
method, which indicates that the method has no optimal
solution of resource allocation scheduling under the time
constraint. According to the data results in the table. In
Phuong (2019) related research, the energy consumption is
196 at least, 294 at most, 3.1% at most, and 1.5% at least.
Five experiments have unresolved problems, that is, resource
allocation and scheduling failure. In Dzhurik and Belov
(2019) related research, the energy consumption is at least 177,
the most 298, the highest 3.5%, and the lowest 1.9%; In Yang
(2019) related research, the energy consumption is at least 185,

the maximum is 287, the maximum energy consumption ratio
is 2.9%, and the minimum is 1.9%. The maximum energy
consumption of the proposed method is 132, at least 89, the
maximum energy consumption is 8.9%, and the minimum
energy consumption is 6.9%. In conclusion, the maximum
and minimum energy consumption of this method are higher
than the other three methods, which proves the feasibility of
this method.

3.3.2 Analysis of Emergency Resource Allocation Time
for Different Methods

To verify the working efficiency of the method in this paper,
the experimental analysis of the method in this paper, the
method of reference [5], the method of reference [6] and the
method of reference [7] for emergency resource allocation
need to be compared in terms of time; the shorter the allocation
time, the higher is its working efficiency. The results are
shown in Figure 5.

From the analysis of Figure 5, it can be seen that under
the same conditions, the time taken to allocate emergency
resources is different for each of the four methods. When
the number of experiments is 2, Phuong (2019) method takes
about 8 minutes to deploy, Dzhurik and Belov (2019) method

vol 30 no 2 March 2022 123

EMERGENCY RESOURCE ALLOCATION AND SCHEDULING IN DIFFERENTIAL DISTRIBUTED STORAGE SYSTEM

Figure 5 Comparison of time allocation for different resource allocation scheduling methods.

Figure 6 Comparison of emergency resource allocation delays for different methods.

takes about 6 minutes to deploy, Yang (2019) method takes
about 10 minutes to deploy, the deployment time of this
method is about 3 min; When the number of experiments
is 7, Phuong (2019) method takes about 12 minutes to deploy,
Dzhurik and Belov (2019) method takes about 10 minutes
to deploy, Yang (2019) method takes about 7.5 minutes to
deploy, and that of this method is about 2 minutes. Through
comparison, it can be seen that this method is short in
emergency resource deployment, high in work efficiency, and
has certain reliability.

3.3.3 Analysis of Emergency Resource Scheduling
Delays in Different Methods

In order to verify the real time performance of this method,
compared with the Phuong (2019) method,Dzhurik and Belov
(2019) method and Yang (2019) method, to calculate the delay
time of each method, the shorter the delay time, the higher the
feasibility. The results are shown in Figure 6.

It can be seen from Figure 6 that the four methods change
with the change of cache coefficient when the emergency

resource is allocated. When the cache coefficient is 2,
the allocation time of reference [5] method is about 29 s,
the allocation time of reference [6] method is about 39 s, the
allocation time of reference [7] method is about 23 s, and
the allocation time taken by this method is about 17 s. For
10 s, the curve shows that the method has the shortest time
delay and quickest reflection, which proves that the proposed
method has better real-time performance.

3.3.4 Load Equilibrium for Deployment of Emergency
Resources by Different Methods

In order to verify the advantages of this method, the load
balance of the four methods is compared experimentally.
The load balance is constructed on the network structure to
enhance the scheduling performance of emergency resources,
and the larger the value of load equilibrium is, the more
balanced is the load of the emergency resource scheduling
node, and the utilization ratio of emergency resources in the
storage system is improved. The results are shown in Figure 7.

124 Engineering Intelligent Systems

L. CHEN

Figure 7 Comparison of emergency resource scheduling load balance for different methods.

Figure 7 shows that the equilibrium value of this method
is higher than that of the other three methods as the scale
of the computing emergency resource node increases. This
is because this method determines the priority level in the
scheduling of resources, which reduces the time required to
allocate resources, and improves the efficiency of emergency
resource allocation.

4. CONCLUSIONS

With the advent of the era of big data, the current emergency
resource scheduling method cannot meet the users’ demands
for real-time emergency resource scheduling and low energy
consumption. In order to meet these demands, this paper
proposes a differential distributed storage system emergency
resource allocation and scheduling method. Here, the
resource allocator is introduced to schedule tasks in order
of priority. In the priority queue, the potential energy
method is used to analyze the data-entering time of the
priority queue. This paper introduces the adaptive resource
scheduling algorithm based on the ant colony algorithm and
the particle swarm algorithm, resulting in an emergency
resource allocation and scheduling method for different
distributed storage systems. The experimental results show
that this method can: effectively schedule the emergency
resources of different distributed storage systems, achieve
real-time success, and reduce energy consumption, all of
which are of great practical significance.

REFERENCES

1. Al-Haija Q.A., Asad M.M., Marouf I., Bakhuraibah A., Enshasy
H. 2019. FPGA Synthesis and Validation of Parallel Prefix
Adders. Acta Electronica Malaysia, 3(2), 31–36.

2. Amine, K. 2019. E-fuel system: A conceptual breakthrough for
energy storage. Science Bulletin, 64(4), 227–228.

3. Bramasta D., Irawan D. 2019. Tourism Object Mapping Based
on Geographic Information System in Baturraden District,
Regency of Banyumas. Acta Informatica Malaysia, 3(2), 14–
18.

4. Chong, L.W., Wong, Y.W., Rajkumar, R.K., Isa, D. 2018. An
adaptive learning control strategy for standalone PV system with
battery-supercapacitor hybrid energy storage system. Journal of
Power Sources, 394(15), 35–49.

5. Dzhurik, A.S., Belov, A.M. 2019. The integrated data-
acquisition system of the T-11M tokamak. Instruments and
Experimental Techniques, 62(1), 18–21.

6. Fang, W.W., Ding, S., Li, Y.Y., et al. 2019. OKRA: Optimal task
and resource allocation for energy minimization in mobile edge
computing systems. Wireless Networks, 25(5), 2851–2867.

7. Feng, C., Liao, H.Y., Tian, X.Q., et al. 2018. Model
and algorithm for lean principle based deploying emergency
resources. China Safety Science Journal, 28(6), 185–191.

8. Fu, D.Q., Chen, Z.H., Jian, J., et al. 2019. Research of resource
location & allocation model in regional emergency joint action.
Mathematics in Practice and Theory, 49(6), 30–41.

9. Hammouda, M., Vegni, A.M., Peissig, J., et al. 2018.
Resource allocation in a multi-color DS-OCDMA VLC cellular
architecture. Optics Express, 26(5), 5940–5961.

10. Heinonen, J.S., Luttinen, A.V., Spera, F.J. 2019. Deep open
storage and shallow closed transport system for a continental
flood basalt sequence revealed with Magma Chamber Simulator.
Contributions to Mineralogy and Petrology, 174(11), 1–18.

11. Liang, X., Yun, J.F., Wang, Y., et al. 2019. A new high-capacity
and safe energy storage system: Lithium-ion sulfur batteries.
Nanoscale, 11(41), 19140–19157.

12. Naidu, K., Battula, R.B. 2018. Quick resource allocation in
heterogeneous networks. Wireless Networks, 24(8), 3171–3188.

13. Phuong N.H. 2019. A Short Communication on Reverse
Logistics Role in the Supply Chain. Information Management
and Computer Science, 2(1), 10–14.

14. Xu, J.P., Li, X., Zhao, X.F.2019. A Resource scheduling
Improvement Algorithm in Cloud Storage Environment .
Computer Application Research, 36(7), 2015–2019

15. Yang, L.Q., Chen, Y.Y. 2019. Resource-efficiency improvement
based on BBU/RRH associated scheduling for C-RAN. Wireless
Networks, 25(5), 2805–2815.

vol 30 no 2 March 2022 125

EMERGENCY RESOURCE ALLOCATION AND SCHEDULING IN DIFFERENTIAL DISTRIBUTED STORAGE SYSTEM

16. Yang, Q., Chen, J.M., Liu, J., et al. 2019. Task allocation of
emergency rescue workers based on bilateral matching decision.
China Safety Science Journal, 29(1), 180–186.

17. Zhang, Q., Li, G. 2019. 1A predictive energy management
system for hybrid energy storage systems in electric vehicles.
Electrical Engineering, 01(3), 759–770.

18. Zhang, X.Y., Guo, D.X., An, K., et al. 2020. Secure transmission
and power allocation in multiuser distributed massive MIMO
systems. Wireless Networks, 26(2), 941–954.

19. Zheng, K. 2019. Simulation of emergency resource optimization
scheduling for differential distributed storage systems. Com-
puter Simulation, 36(7), 415–418.

126 Engineering Intelligent Systems

