
Eng Int Syst (2022) 3: 185–193
© 2022 CRL Publishing Ltd Engineering

Intelligent Systems

An Improved Clustream Clustering
Algorithm for Anomaly Detection
in Electric Power Big Data

Yanming Wang∗

The School of Railway Locomotive, Jilin Railway Technology College, Jilin 132200, China

As one of the most important data forms, stream data has been applied to many applications, especially in electric power big data. Anomaly detection
in power big data has always been an important research topic of data mining analysis. How to detect abnormal data rapidly and accurately has
become a research hotspot. The poor accuracy and high complexity of the traditional detection methods, along with other limitations, make them
incapable of processing modern power big data efficiently and effectively. This paper proposes an effective anomaly detection method in power big
data based on the modified CluStream clustering algorithm. In the proposed method, during the online stage, Redis clusters are used to save all the
data within a certain period of time and iteratively update the data over time. During the offline state, the K-means clustering algorithm is optimized to
reduce time complexity, and an optimal-distance method is used to determine the cluster centers quickly. Experiment results prove that the proposed
method can accurately detect the outliers in power big data, and is quicker than the original CluStream clustering algorithm.
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1. INTRODUCTION

Electric power big data technology can be applied to different
stages of smart grid, and mining of power big data can
facilitate the transformation and optimal development of the
operation model of power grid (Yan et al., 2015; Jiang et al.,
2017). The normal and orderly development of the power
industry needs to be guaranteed to ensure social progress
(Saint-Pierre and Mancarella, 2017; Pan et al., 2018; Susto,
2018). However, the differences in power data sources and
the lack of data quality monitoring mechanisms in the power
system have led to the generation of abnormal data (Chen and
Zheng, 2021). It is of great significance for the development
and progress of power grid to find the potential anomalies in
power system.

Anomaly detection techniques in power big data have
important implications for both the grid-side and the user-
side. On the grid-side, by obtaining the electrical quantities
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of each node in the power grid topology, each node can be
evaluated independently (Xu, 2019). On the user-side, non-
technical frauds in power grid can be prevented by mining the
power consumption data of the users.

The poor accuracy and high complexity of the traditional
detection methods along with other limitations, making them
unable to meet the processing requirements of modern power
big data. In the existing data stream clustering algorithms,
the online data maintenance stage may result in incomplete
data, and power outages may cause data loss. For these
reasons, and considering the low time complexity requirement
of the stream data clustering algorithm, this paper proposes
to improve the online micro-clustering stage of the stream
data clustering algorithm. In the proposed method, the Redis
clusters are used to save all the data within a certain period
of time, and iteratively update the data over time. And the
K-means offline clustering algorithm is also optimized, an
optical distance method is used to quickly and accurately
determine the cluster centers, which reduces the total number
of iterations and lowers the time complexity of the stream data
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clustering algorithm. Finally, this paper applies the improved
stream data clustering algorithm to detect abnormal power
consumption behaviors of users, and obtains good results.

2. RELATED WORK

Most of the existing methods use static data to perform outliner
mining in electric power big data. For example, given the
high cost of acquiring abnormal samples from user power
consumption data in the actual environment, some studies
propose an improved Gaussian kernel function to perform
outlier detection from the historical power data of power
consumers. Experimental results show this method has a
high anomaly-detection rate. The current electric power
consumption anomaly detection methods are systematically
analyzed and compared from three different angles: system
states, data and game theory. These should be useful for
further research (Chen et al., 2018).

Cheng et al. (2018) use a time series-based algorithm to
compare the historical power consumption with the collected
data. Firstly, the characteristics of the power consumption
behaviors of users are analyzed and compared with the actual
data collected. Then a time series-based algorithm is used to
locate the users with abnormal power consumption behaviors,
so as to find consumption anomalies.

Others propose a distributed clustering algorithm for
anomaly detection in which the unsupervised clustering
techniques, namely K-means clustering and hierarchical
clustering algorithms are used and the results are compared
with the real case data, in order to deal with the increasing
problems in the current power consumption data (Parwez
et al., 2017).

Based on the theory that the total reading of the meter should
be equal to the sum of the readings of all sub-meters,utilize the
tree topology of the power grid to identify the abnormal power
consumption behaviors through a multiple linear regression
model (Han and Xiao, 2017). In this approach, the micro-
cluster structure is redesigned and three variables are added
to the original micro-cluster structure to make it into a seven-
tuple structure, thus reducing the memory usage and making it
capable of storing more useful data. However, this method is
too complex for those applications that operate directly on the
data itself (Teixeira and Milidiú, 2010; Dastani et al., 2019).

Previous research suggests distributing the clustering
algorithm in the online stage of stream data clustering to each
node in Storm to form local nodes. After each cluster has been
formed, the local node will send the clustering result to the
central node for global clustering. However, this method still
uses the traditional time pyramid framework for data storage,
which would result in some data loss (Yin et al., 2019).

One study proposed dividing the online layer of the algo-
rithm into four parts: grid division, grid density calculation,
density attenuation strategy, and grid maintenance. The grid
technique is used to implement online compression of data
streams, and the grids are divided into dense and sparse areas
according to the density of the grids. However, during the
grid maintenance stage, the algorithm will clear out the sparse
grids, resulting in some data loss (Benmoussat et al., 2013).

In short, the statistics-based outlier detection algorithms
assume that the data distributions satisfy the predefined
probability distribution model; that is, certain prior knowledge
is required. However, power big data are essentially random,
making such methods unsuitable for practical application.
Clustering-based outlier detection algorithms take as outliers
the sample points that do not belong to any cluster. Some
clustering algorithms can directly obtain outliers, but most
require the intervals between sample points and cluster
centers, which increases the complexity. Although the mining
technology applied to static power big data is gradually
maturing, most of the data in various industries are generated
and utilized in the form of data streams (Jiao et al., 2019).
With the continuous development and application of various
sensing technologies and measurement technologies in the
power grid, the data generated by these devices are growing
exponentially, forming large-scale data streams. Most
researchers use stream data clustering algorithms to mine the
data streams, but the data stream online processing stage often
causes some data loss, which is not suitable for data-sensitive
applications. Therefore, the design of a micro-cluster online
maintenance stage for the stream data clustering algorithm and
its combination with actual applications have become research
hotspots.

3. CHALLENGES AND LIMITATIONS OF
THE STREAM DATA CLUSTERING
ALGORITHMS

Evolving from traditional clustering algorithms, the stream
data clustering algorithms facilitate the clustering of stream
data. CluStream algorithm is both a hierarchical data
stream clustering processing framework and an incremental
clustering algorithm. DeStream algorithm is a density-based
data stream clustering processing framework. The CluStream
algorithm divides the clustering process into two stages:
online micro-clustering, and offline macro-clustering. The
micro-clusters are defined by clustering features. Based on the
CluStream algorithm, the DeStream algorithm also introduces
a latent cluster structure and an isolated point cluster structure.
Obviously, both algorithms adopt a two-stage framework:
the online stage, which maintains the coming data stream
in memory, and performs snapshot storage of the micro-
clusters; and the offline stage, which clusters the data stream
according to different requirements from users. The stream
data clustering framework structure is shown in Figure 1.

Unlike static data, the stream data is ‘non-stop flowing’,
unlimited, and fast-arriving (Han and Xiao,2017). The stream
data clustering algorithm has the following characteristics:

1) Single scan. Stream data can only be read once following
the reading order, and most of the data cannot be used
repeatedly.

2) Low time complexity. The stream data is generated
at a rapid pace and needs to be constantly changed in
memory, so it is necessary to complete the mining of
stream data within a limited time, and provide real-time
responses.
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Figure 1 The framework structure of stream data clustering.

3) Real-time incremental update. The data flow is endless
and may change at any time, so the stream data clustering
algorithm can evolve as a function of the data flow
changes.

Although the stream data clustering algorithm has improved
the ability of the traditional clustering algorithms to stream
data, it is not suitable for all applications (Andrade et al.,
2017; Song and Wang, 2018). Since the stream data clustering
algorithm cannot store all the data, the clustering can only
be done in a macro manner during offline clustering, and the
clustering results are not accurate enough. Since data is stored
in the memory, it can be easily lost if the host fails.

The proposed method utilizes the stream data clustering
algorithm to extract the typical power consumption behaviors
of each type of users from the users’ consumption data stream,
and uses it as the basis for anomaly detection. Because
the processed data is a big data stream, the use of stream
data clustering algorithm can effectively cache and iteratively
update the data stream, thereby mining the information in the
data stream. The power consumption behaviors of different
consumers may or may not be similar. Hence, it is necessary
to extract precisely the typical power consumption behaviors
of each type of users. The center point of the hypersphere in
the clustering algorithm is not only typical, but also does not
need to be calculated, so the center points can be directly used
as typical power consumption behaviors for different types of
users.

4. IMPROVED STREAM DATA
CLUSTERING ALGORITHM

In view of the shortcomings of the stream clustering algorithm,
this paper modifies the CluStream algorithm and proposes an
improved streaming data clustering algorithm, the streaming
K-means clustering algorithm. It improves the online stage
of the traditional stream clustering algorithms, and optimizes
the offline stage of the clustering algorithms, so that the
proposed clustering algorithm is more suitable for clustering
applications that are more sensitive to data.

4.1 Online Stage Optimization Based on
Redis Clusters

For the online stage of the CluStream algorithm, this paper
proposes to use the Redis clusters to maintain streaming data.

Redis is a non-relational database (De Aquino et al., 2007),
and its reading and writing speed can reach 100,000/s key-
value pairs, allowing real-time responses to users. Redis
supports multiple types of data structures and provides
extensive data operations for each data type. However, Redis
is a single-threaded database and does not provide several
features such as redundancy. Therefore, this paper uses the
Redis clusters instead of a single Redis for data caching. The
Redis clusters expand the structure and performance of Redis,
retain the advantages of Redis, and can load data into the
disks for data backup. This makes data persistant. The Redis
clusters adopt a primary-secondary structure. The secondary
nodes save the backup of the primary node. Each node in the
cluster communicates with each other based on the Gossip
protocol to complete the transmission and exchange of related
data. This paper adopts the smallest structure of the Redis
cluster, the topology of which is shown in Figure 2.

During the operation, each node in a cluster periodically
sends heartbeat messages to other nodes to convey relevant
information. Each heartbeat message includes a PING
message and a PONG message. In addition to the information
transmitted by the sender node itself, the message also
includes the Gossip Section which contains the relevant
information held by several random nodes (Punia and Rani,
2014). The communication process is shown in Figure 3.

During the communication, a waiting time T is set after the
message has been transmitted by a sender node. If no message
is received in reply within this time period, the receiver node
will be marked as a Probable Fail (PFAIL) node. If more than
half of the primary nodes in the cluster have marked a node’s
state as PFAIL, then the node will be determined as having
a FAIL state, that is, the logoff state. Because the nodes in
a Gossip Section message are randomly selected, to increase
the number of valid messages in a heartbeat message, this
paper designs and maintains a data structure with anode time
decaying strategy where the nodes in the cluster will be added

vol 30 no 3 May 2022 187



AN IMPROVED CLUSTREAM CLUSTERING ALGORITHM FOR ANOMALY DETECTION IN ELECTRIC POWER BIG DATA

Figure 2 Topology of the Redis cluster.

Figure 3 The communication processing between nodes during the operation.

to a hash list. The list maintains each node and the number
of times it has been marked as being in the logoff state. Each
time a heartbeat message is sent, the Gossip Section message
always takes precedence over the information in those nodes
that have too many logoffs.

4.2 Offline Stage Optimization of
The Clustering Algorithm

For the offline stage of the CluStream algorithm, this paper
proposes to modify the K-means algorithm. In the traditional
K-means clustering algorithm, the selection of the initial
clustering centers not only affects the result of clustering, but
also affects the efficiency of the algorithm (Bandyopadhyay
and Maulik, 2002; Li et al., 2018). This paper proposes the
best-distance method to determine the initial clustering center.
The steps are as follows:

1) Select the first point in the data as the first cluster center.

2) Calculate the distance from other points in the data
(points other than the cluster center) to each cluster
center, and take the shortest distance.

3) Take the point with maximum value from each shortest
distance and use this point as the center of the next cluster.

The proposed method does not limit the clustering centers to
a few closer data points; therefore, the number of clustering
iterations is decreased, thereby making the algorithm more
efficient. In summary, the proposed streaming K-means
clustering algorithm uses Redis clusters for optimization
during the online stage, and the data processing efficiency is
high enough to cache all the data streams, thereby ensuring the
integrity of the data. Moreover, Redis itself supports loading
data into the disk. This prevents data from being lost due to
power failure (making it persistant) and ensures data security.
By improving the offline stage of the K-means clustering
algorithm, the proposed algorithm is capable of providing
real-time responses, which meets the “low time complexity”
requirement of the stream data clustering algorithm.

5. EXPERIMENTS AND ANALYSIS

In order to verify the feasibility of the proposed algorithm,
in this paper, a streaming K-means algorithm is used to
extract the typical power consumption curve of the cluster to
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Table 1 User power consumption data (96 data points per day).

Year Time / min MT-001 … MT-415
2017 01-01 00:00:00 1.27 × 1014 … 0

01-01 00:15:00 2.54 × 1014 … 8.00 × 1014

… … … …
12-31 23:45:00 2.54 × 1014 … 1.28 × 1014

2018 01-01 00:00:00 2.54 × 1014 … 6.90 × 1014

01-01 00:15:00 1.27 × 1014 … 7.60 × 1014

… … … …
12–31 23:45:00 1.27 × 1014 … 6.50 × 1014

which the user belongs, and compares the actual daily power
consumption curve of a user, the typical power consumption
curve of the user, and the typical power consumption curve of
the user’s cluster in order to detect any anomaly in the user’s
power consumption behavior.

5.1 Experimental Data

The actual power consumption data of 415 users in the
UCI dataset from 2017 to 2018 are used as the data basis,
and the actual power consumption data of 100 users from
January to December 2017 and from January to February
2018 are selected as the training dataset and testing dataset,
respectively. The data are automatically acquired by the meter
reading system at a time interval of 15 minutes; that is, a meter
reading (unit kW) is collected every 15 minutes and uploaded
automatically, with 96 data points per day for each user. The
power consumption data are shown in Table 1.

5.2 Data Preprocessing

A mean substitution method is adopted whereby the missing
attribute values will be replaced with the mean values of other
attributes. The power consumption data of different users
may vary greatly due to their different power consumption
habits. Therefore, data standardization is required during the
data clustering stage. Otherwise, the influence of attributes
with larger quantities could be amplified, and attributes with
smaller quantities might be ignored during data clustering,
resulting in inaccurate clustering results and even errors. In
this paper, the deviation standardization algorithm is used to
normalize the data, and the data are linearly transformed.

Assume the data set Xi = {xi1, xi2, . . . , xin} has a total of
n attributes, then the normalized values can be calculated as:

xi j

1 ≤ j ≤ n
′
=

xi j

1 ≤ j ≤ n −
min

1 ≤ j ≤ n {xi j }
max

1 ≤ j ≤ n {xi j }−
min

1 ≤ j ≤ n {xi j }
(1)

Where x ′
i j denotes the normalized data; max

1≤ j≤n
{xi j } and

min
1≤ j<n

{xi j } are the maximum and minimum values in Xi

respectively, n is equal to 96. The normalized values are all
within the range of [0, 1] to avoid amplifying the influence of
those values with large orders of magnitude, thereby making
the clustering results more accurate.

5.3 Experimental Process

In the experiment, the data for January 2017 are used as the
basis for calculating the typical power consumption curve
of 100 users and of the clusters that the users belong to,
respectively, and the results are stored in Redis clusters. The
Redis clusters are built in a virtual machine. Because the
default port number of Redis is 6379, this paper sets the other
five Redis port numbers as 6380, 6381, 6382, 6383, and
6384, respectively. Taking the Redis cluster with port number
6380 as an example, the configuration file settings are as
follows: the port number is set as 6380 (port6380); Redis
cluster support (cluster-enabled yes) is started and the file to
save node configuration information is set as node-6380.conf
(cluster-config-file nodes-6380.conf); the timeout of Redis
cluster nodes is set as 15s (cluster-node-timeout 15000); the
AOF incremental persistence strategy is started (appendonly
yes: it means APPEND ONLY MODE).

By setting scheduled tasks, the consumption data of each
of the 100 users from February to December 2017 from the
training set are stored in Redis clusters at a 15-min interval
for data caching, and the daily real-time power consumption
curve of each user is compared with the user’s previous typical
consumption curve and the typical consumption curve of the
cluster to which the user belongs. Finally, based on the data
of the first 25 days starting from the current date, the model is
incrementally updated in real time and the measurement result
curves are updated. The dataset containing meter readings
from January to February 2018 is used for testing.

5.3.1 Typical Curve Extraction of a Single User

In order to avoid change variations, the data of each user at
each time point is averaged to obtain a curve containing 96 data
points, which is the typical curve of a single user. For each
user, the curve extraction can be calculated as follows:

xit
1≤t≤96

=
∑n

k=1 xtk

n
(2)

where xit is the mean value of the i -th user at the t-th time
point; n denotes the days of the selected data sample, xtk is
the value of the user’s power consumption data for the k-th
day at the t-th time point.

5.3.2 Typical Cluster Curve Extraction

The optimized K-means clustering algorithm is used to cluster
the typical power curves of 100 users,and the clustering center
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Figure 4 Relationship of SSE and the value of k by elbow method.

of each cluster is obtained. The center of the cluster to which
each user belongs represents the typical cluster curve of the
user.

5.3.3 Similarity Measure

The Euclidean distance and Pearson correlation coefficient
are used to measure the similarity among each user’s daily
real-time power consumption curve, the user’s typical power
consumption curve, as well as the typical consumption curve
of the cluster that the user belongs to. Based on the similarity
results, it can be determined whether or not a user has
abnormal power consumption behaviors (Pearson, 1996).

Euclidean distance is used to measure the distance between
the user’s daily power consumption curve and the user’s
typical power consumption curve, indicating the difference
in the values of the user’s power consumption data. The
Euclidean distance can be calculated as:

d =
√√√√ N∑

i=1

(x1i − x2i )2 (3)

Where N is the number of data points on two load curves; x1i

and x2i denote the corresponding values on each of the two
data curves.

The Pearson’s correlation coefficient measures the trend
of a user’s daily real-time power consumption curve and the
typical power consumption curve of the cluster that the user
belongs to, reflecting the trend variation between the user’s
actual power consumption curve and his/her daily power
consumption pattern. The Pearson correlation coefficient can
be calculated as:

pX,Y =
∑

XY −
∑

X
∑

Y
N√(∑

X2 − (
∑

X)
2

N

) (∑
Y 2 − (

∑
Y)

2

N

) (4)

where N is the number of data points on two load curves; X
and Y denote the corresponding values on each of the two data
curves.

5.4 Training Process Analysis

During the offline clustering, the optimized K-means cluster-
ing algorithm is used to cluster the data cached in the Redis
clusters. In order to improve the quality of the clustering,
and reduce its time complexity, the minimum sum of squared
errors (SSE) is used as the criterion together with the elbow
method to determine the optimal number of clusters. Taking
the initial typical power consumption curve of a cluster
containing the data of 100 users in January 2017 as an
example, the optical number of clusters is as shown in Figure 4.

According to the elbow method, the initial optimal number
of clusters is 3. Figure 5 shows the results obtained by
using the offline K-means algorithm for clustering. It can
be seen that the sample points are concentrated in three
areas, represented by the black dots, red rectangles and blue
triangles. Therefore, the optimal number of clusters is 3.

During the continuous training process using the actual
power consumption data from February to December 2017,
the statistical variations of the optimal clusters are shown in
Figure 6. It can be seen from Figure 6 that with the continuous
feeding of streaming data, the optimal number of clusters
determined with different data have certain differences,
leading to different clustering results. Specifically, at three
data points, the optimal number of clusters changes suddenly
from 3 to 4. However, overall, the variations are quite subtle.
Therefore, setting the optimal number of clusters to 3 is
sufficient for most situations.

5.5 Experimental Results

In the experiment, through a large number of training runs,
the measurement threshold of the Euclidean distance a and
the absolute vale of the Pearson correlation coefficient b are
determined to be 0.46 and 0.78, respectively. The criteria
for the decision table are shown in Table 2. The user’s
daily power consumption curve, the updated typical power
consumption curve of the cluster that the user belongs to, and
the typical power consumption curve of the user are measured
and compared (see Table 2) to determine whether or not a user
has exhibited abnormal power consumption behaviors.
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Figure 5 The clustering result graph of the proposed method.

Figure 6 Changes in the optimal number of clusters during training.

Table 2 Anomaly detection thresholds.

Euclidean distance a Pearson correlation coefficient b Abnormal user
<a >b No
>a <b Yes
>a >b Suspicious
<a <a Suspicious

Table 3 Performance comparison of different algorithms.

Algorithm Average Acceptance rate (per/s) Average Processing time (ms) Model Updating Time (ms)
CluStream 310 53 5000

streaming K-means 1000 30 3000

The power consumption data from January to February
2018 are used to detect any anomaly in the user’s power
consumption. During the test, it was found that the readings of
the user’s MT-41 were abnormal on January 21, 2018, being
0.58 and 0.75, respectively. The user’s power consumption
curve is shown in Figure 7, where curve 1 is the user’s
typical power consumption curve, curve 2 is the typical
power consumption curve of the user’s cluster, curve 3 is
the power consumption curve of the user on January 21,
curve 4 is the normal power consumption curve of the user

on January 20. It can be observed that the user’s power
consumption peaked on January 21, and was different from
the user’s daily power consumption curve. Hence, it was
determined that the user had abnormal power consumption
behavior, which was consistent with the actual situation.

Finally, the overall performances of the CluStream algo-
rithm and the streaming K-means algorithm are compared.
The results are shown in Table 3 where the average acceptance
rate represents the processing speed of stream data in
the online stage of the clustering algorithm; the average
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Figure 7 Power consumption curve of the user MT-41.

Table 4 Abnormal power data points identified by manual detection.

Power Anomaly Number Date Normalized Load /W
1 2018-1-3 0.71
2 2018-1-7 0.82
3 2018-1-10 0.72
4 2018-1-12 0.80
5 2018-1-15 0.66
6 2018-1-20 0.67
7 2018-1-31 0.68
8 2018-2-4 0.65
9 2018-2-11 0.62

Figure 8 Anomaly detection results for power big data in practical applications.

processing time represents the speed of accessing online
data in the offline stage; and the model updating time is
the time required for the incremental update of the offline
model. The table indicates that the proposed streaming

K-means clustering algorithm is faster than the traditional
CluStream algorithm in terms of data processing and model
updating.
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5.6 Real-World Applications

Take the actual power consumption in a district of Nanjing
in 2018 as an example. The power big data curves from the
power data of the AC distribution transformers were drawn,
and nine abnormal power data points were obtained through
manual detection, as shown in Table 4.

The proposed method is used to obtain the local information
from the power consumption data sample, and the anomaly
detection results for power big data are shown in Figure 8.
The red dots in the figure denote abnormal values, which are
consistent with the results obtained through manual detection.
This verifies the effectiveness and accuracy of the proposed
algorithm.

6. CONCLUSIONS

The existing stream data clustering algorithms have several
shortcomings including: data loss due to power outages,
inadequate online data maintenance, lack of suitability for
some data-sensitive applications, etc. In response to these
problems, and based on the security and integrity of the data
as well as the low time complexity requirement of the offline
clustering algorithm, this paper improves the stream data
clustering algorithm CluStream, and proposed a streaming
K-means algorithm. In the proposed method, Redis clusters
are used to perform online maintenance of data streams, and
the offline stage is also optimized to make the stream data
clustering algorithm more accurate and efficient. Finally, the
proposed algorithm is used to detect anomalies in users’ power
consumption, and results show that it can do so effectively.
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