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Natural signals are generally used in the compressed sensing of multispectral images. However, natural signals do not have sparseness, resulting in the
reconstruction time and stability being unable to reach the ideal state. Hence, an interference multispectral image compressed sensing reconstruction
algorithm based on machine learning is proposed in this paper. The wavelet transform is used to complete the interference multispectral image coding.
The encoded image is used to construct a compressed sensing model. The model is used to find the transformation basis in the natural signal, so that
the decomposition coefficients of non-sparse natural signals under this basis are not zero. This solves the problem for non-sparse natural signals. The
measurement matrix is designed to ensure the accurate reconstruction of data after effective compression sampling. Then, the SVM decision tree of
a machine learning algorithm is used to complete the design of the image reconstruction algorithm. Test results indicate that the proposed algorithm
can achieve high stability for both high and low computing platforms. It takes less time and the reconstruction effect is better than that obtained by
the existing algorithm. This confirms the usefulness and benefits of the proposed algorithm.
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1. INTRODUCTION

In addition to the abundant two-dimensional spatial informa-
tion obtained from the target, the spectral data also contains
one-dimensional spectral information, which is widely used
in biomedical, microbial detection, military exploration and
other fields (Ramon et al., 2017; Wu et al., 2018; Muggleton
et al., 2018). However, with the increase of its spectral
dimension, there is a lot of information in the spectral image,
and the traditional sampling method is no longer suitable for
collecting information from the image. On the other hand,
when the optical absorption of the imaging target is weak,
the contrasts in the image are reduced, which hampers the
analysis of each spectral segment of the target (Nalmpantis
and Vrakas, 2019).
∗Corresponding Author Email: zhangshufeng335@sina.com

To address the aforementioned problems, researchers have
proposed several solutions. At present, the most widely-
used spectral reconstruction algorithm involves non-uniform
interpolation. This method has several advantages: it is simple
and effective; it requires only a small number of calculations;
and it can achieve real-time super-resolution reconstruction
of multispectral image. However, the interpolation process
is too simple and cannot take into account the possible
existence of motion estimation and image fusion. Therefore,
the reconstruction process has poor stability, and an optimal
reconstruction result cannot be guaranteed (Baturay et al.,
2017; Fayez et al., 2019; Jia et al. 2019) proposed a Laplacian
pyramid-based super-resolution image reconstruction algo-
rithm for a group network. Using group structure as the
construction module of the network, there are both forward
and feedback connections between the convolution layers.
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At the same time, the Laplacian pyramid structure is used
to gradually reconstruct a high-resolution image. The results
of testing to verify the effectiveness of the algorithm, show
that the reconstruction produced by the algorithm is close to
the original image, although the computational stability and
reconstruction speed is not ideal. Zhan et al. (2019) and
Rastogi and Choudhary (2019) proposed a super-resolution
image reconstruction algorithm based on image similarity and
feature combination is proposed. Firstly, using the cross-scale
similarity of image, the KNN algorithm is used to establish
the mapping relationship between the pixel features and
gradient features of high-resolution and low-resolution images
respectively, and then the high-resolution image including
high-frequency information is reconstructed by using the
mapping relationship between pixel features. Effective high-
frequency information is obtained from the input image by
using singular value thresholding, and the high-frequency
information is amplified and overlaid on the high-resolution
image by using the gradient feature mapping relationship, and
the final image reconstruction result is obtained. Taking the
image segmentation database of the University of California as
the experimental data, the experimental results are displayed
in MATLAB software under Windows 7. The experimental
results show that the details of the reconstructed image
are significantly enhanced and the visual effect is greatly
improved, although the reconstruction process takes a long
time and does not have real-time performance.

In order to solve the aforementioned problems, this paper
examines the compression sampling and accurate recon-
struction of multispectral image based on the compression
sensing and image reconstruction methods. The multi-
spectral image compression and sensing framework based on
partially-coherent illumination improves the image contrast
and samples the spectral data at a sampling frequency far
lower than Nyquist frequency, which solves the problem of
spectral image reconstruction.

2. DESIGN OF COMPRESSION
PERCEPTION RECONSTRUCTION
ALGORITHM OF
INTERFEROMETRIC
MULTI-SPECTRAL IMAGE
BASED ON MACHINE LEARNING

In regard to the spectral imaging of a microorganism, due to
its own structural characteristics, the absorption capacity of a
microorganism is poor, which leads to the lack of details or
even no display. Therefore, in this paper, machine learning
technology is used to selectively illuminate the reconstructed
object to increase its contrast; also, it uses the principle
of compressed sensing, takes image information as a prior
condition, and uses the effective wavelet transform method
to reconstruct the original spectral data from the compressed
low-dimensional data (Guo, 2021).

The theory of compression sensing involves the use of
a spatial light modulator to compress the measured image
and reconstruct the original data from the compressed low-
dimensional data. The theoretical model of compressed

sensing is included in the spectral imaging technology used
for microscopic matter. On the basis of the compression
sensing measurement model, the separation and compression
of the spectral dimension are increased by using the spectral
separation device, and the original spectral data is recovered
from the low-dimensional measurement value, so as to
realize the compression and measurement of the multispectral
image. Based on machine learning, the design flow of the
interference multispectral image compression and perception
reconstruction algorithm is depicted in Figure 1.

The entire design process of this algorithm follows the steps
outlined above.

2.1 Wavelet Transform is Used to
Complete Interference Multispectral
Image Coding

In the design of the reconstruction algorithm, in order to
simplify the calculation process, the internal structure and
elements of the multispectral image are encoded first. For
image coding, wavelet transform technology can effectively
improve the speed of image processing. A typical example
of the success of wavelet transform in image coding is the
embedded bit plane coding based on wavelet. Basically, it
sorts the wavelet coefficients according to their contribution
to the restored image quality, codes the bit plane one by
one, and terminates the coding at any time according to the
target code rate or distortion (Cao and Wen, 2019; Bazulin
and Sokolov, 2019). Similarly, for a given bitstream, the
decoder can end the decoding at any time, and can obtain the
recovered image at the corresponding bitstream truncation,
so the embedded coding can realize the gradual transmission
and gradual emergence of the image, and the rate control is
simple.

In order to improve the coding efficiency, the static image
sequence coding first encodes an image normally, then creates
a template of the recovered image template, and then the
subsequent images are matched with the template, and the
difference image is encoded. If the correlation between
images is strong, good results will be achieved (Awasthi et al.,
2018; Jung, 2017). Using the wavelet method for matching
can effectively reduce the influence of spectral distribution
on image matching and improve the coding efficiency of
error image. In the process of setting the encoding, the
purpose of quantization is to reduce the entropy of the
transform coefficient as much as possible so as to achieve
greater compression efficiency in the later stage of coding.
However, the distortion caused by the quantization process
will directly affect the quality of the restored image after
inversion. Therefore, the mean square error criterion which
is consistent with the subjective vision is generally used to
measure the distortion degree of the restored image, and guide
the coding (Akagi et al., 2019).

Set the reconstructed image to have complete and incom-
plete images. Assume that there is a strong correlation
between the two images and they have translation character-
istics in space; that is to say, the following relationships exist
between the pixel points of the two images:
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Figure 1 Design flow of algorithm for compression perception reconstruction based on machine learning.

a2(x, y) =

{
m1(x + e, y + f )+1m(x, y)
m2(x, y)

(1)

where, 0 ≤ x < C−c and 0 ≤ y < D−d. C and D represent
the height and width of the image respectively. m1(x, y) and
m2(x, y) are the pixel values of the image of the complete part
and the incomplete part at coordinate (x, y), 1m(x, y) is the
pixel value of the image at the point of breakage. In order to
make full use of the correlation between images and improve
the coding efficiency, m2(x, y) is shifted periodically

m2(x, y) = m2 (x1, y1)− [m2(1− x) mod (C),
(y − n) mod (N )] (2)

where, mod () represents modular operation. Substituting
Equation (2) into Equation (1), the following equation is
obtained:

m2(x, y) = m1(x, y)+1m(x−e, y− f ) = m1(x, y)+1(x, y)
(3)

where, 1(x, y) = 1m(x − e, y − f ), for m1(x, y) and
m2(x, y), the sub-band coefficients n1(t, u) and n2(t, u)
are obtained by the first level wavelet transform, then the
following equation is obtained:

n1(t, u) =
∑
x,y

r1(t)r2(u)m1(x − 2t, y − 2u) (4)

n2(t, u) =
∑
x,y

r1(t)r2(u)m2(x − 2t, y − 2u)

=

∑
x,y

r1(t)r2(u)m1(x − 2t, y − 2u)

+

∑
x,y

r1(t)r2(u)1m(x − 2t, y − 2u)

= n1(t, u)+1(t, u) (5)

where (t, u) represents the corresponding coordinates of the
coefficients in the wavelet domain, and r1(t) is the wavelet
filter coefficient used in the horizontal and vertical wavelet
transform of the sub-band.

In addition to several coefficients at the boundary, substi-
tuting Equation (1) into Equation (5), n2 can be expressed as:

n2(t, u) =
∑
x,y

r1(t)r2(u)m1(x + c − 2t, y + d − 2u)

+

∑
x,y

r1(t)r2(u)1m(x − 2t, y − 2u)
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Figure 2 Construction process of compressed perception model.

=

∑
x,y

r1(t)r2(u)m1(x + c − 2t, y + d − 2u)

+1n(t, u)
(6)

where1(t, u) =
∑

x,y r1(t)r2(u)1m(x−2t, y−2u). When
c and d are all even, 1n(t, u) can be expressed as:

1n(t, u) = n1(t − c/2, u − d/2)+1(t, u) (7)

If c and d are odd numbers, Equation (7) does not hold.
Although both n2(t, u) and n1(t, u) theoretically contain
all the information of m2(x1, y1), but n1(t, u) introduces
additional errors relative to n2(t, u), this is due to the sampling
of the coefficients generated in wavelet transform, which
is caused by the use of different starting points in wavelet
transform. This additional error will be transmitted to the
difference image, which is not conducive to the difference
image coding.

In order to solve the above problems, Equations (4) and
(5) are used to carry out the wavelet transform on the
subsequent images to obtain the coefficients. In this step, no
additional error will be introduced, which is conducive to the
compression of the difference image. The wavelet transform
of the difference image is as follows:

1n2(t, u) = n2(t, u)− n1(t, u)+1(t, u) (8)

The wavelet transform method and the above equations are
used to complete the image coding. As the offset between the
two images increases, the correlation between the sub-band
coefficients will be weakened, and the coefficient correlation
differences of different sub-bands will also be larger (Wu et al.,
2017; Wen et al., 2019). The coefficients of sub-band 1
represent the high frequency information in the horizontal
and vertical directions, which are easily affected by various
interference factors, so they are not suitable for matching.
The coefficients of sub-band 2 represent the horizontal and
vertical low-frequency information and are suitable for image
matching. Because the coding technology based on wavelet

transform mainly realizes compression by the high frequency
sub-band coefficient, the coefficient of difference image in
corresponding sub-band directly affects the coding efficiency.
When the corresponding coefficient of difference is large,
the compression efficiency cannot be improved by using
the difference image, so it is unnecessary to compress the
difference image. Therefore, we need to calculate the
correlation coefficient of the sub-band coefficient. Only when
it meets the preset threshold can the value image be used for
encoding, otherwise the image is directly encoded.

2.2 Build Compressed Perception Model

In order to obtain a more suitable reconstruction method for
the interference multispectral image, based on the results
of interference multispectral image coding, the partially
coherent light is innovated and optimized. This is done
from a simple (partially coherent) light source (with only one
partial coherence factor) to a complex (partially coherent)
light source (with internal and external coherence factors).
Using the form of constructing the compressed sensing model
to complete the image reconstruction, the specific research
structure of the compressed sensing model is set as shown in
Figure 2.

Following the process above, the image after the coding
is adopted. Because a single signal in the image is a one-
dimensional natural signal, z ∈ Sn represents the dimension
of the natural signal line, and zn represents its form, where,
n = 1, 2, 3, . . . , n, then z(n) can be expressed by a linear
matrix, that is:

G = ℘, z −1n2(t, u) (9)

where, linear matrix ℘ is a two-dimensional matrix, dimen-
sion is j ∗ k, and j < k. It can be seen from Equation
(9) that it is a dimension reduction result of natural signal
G projected in the matrix, with dimension j ∗ 1. Since
the dimension of compressed data G is much smaller than
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that of the original data Z , the solution of original signal Z
in Equation (9) will become uncertain. The equation will
produce infinite solutions. When the original signal itself
has sparsity, the original signal can be reconstructed from the
compressed measurement signal O by using the solution l
optimization problem to realize the signal restoration. The
equation is:

z̄ = arg min |z|0 (10)

where, |z|0 is the norm of the original signal, used to measure
the number of non-zero elements in the original signal.
According to the theory of compressed sensing, if we want
to reconstruct the original signal accurately from the data,
then the number of measurements (the number of columns of
measurement k) j must be j = o(lg(n)), and the projection
matrix ℘ satisfies RIP condition, that is:

(1−R)|z|22 ≤ |℘z|22 ≤ (1+R)|z|22 (11)

where, R constant and R ∈ (0, 1). It can be seen from
Equation (11) that the RIP condition ensures that the energy
of measured value O after compression is close to the energy
of original signal Z . The premise of compressed sensing
theory is based on the sparseness of a signal. In the actual
environment, natural signal is often not sparse and cannot be
applied to compressed reconstruction. Therefore, by using
another natural signal property, that is, by finding a set of
transformation bases, the decomposition coefficients of non-
sparse natural signals under the transformation bases are
mostly zero except for a small part which is not zero, that
is:

z =
n∑

i=1

Jiℵi = Jℵ (12)

where, ℵi ∈ R|z| is the decomposition coefficient, ℵ =
|ℵ1,ℵ2,ℵ3, . . . ,ℵn| , =i ∈ Rn+1 is the transformation basis,
= = |J1, J2,=3, . . . ,=n|. = is the representation of Z
in another field, and its relation is equivalent. The sparse
representation of non-sparse signal Z is substituted in the
measurement process based on compression perception, as
follows:

o = ℘z − ℘=< · R= (13)

where, A ∈ R j∗k is a new perception matrix, if A also meets
RIP conditions, the coefficientβ can be solved by solving the l
norm minimum optimization problem of the sparse coefficient
of the original signal, that is:

β = arg min |℘|0 (14)

The original non-sparse signal is obtained by linear
combination of = and transform basis R. In the theory of
compressed sensing, in addition to the sparse expression of
coefficients, a measurement matrix should also be designed
to ensure that the data can be accurately reconstructed after
effective compressed sampling. The premise of accurate
data recovery is that the signal structure observed by the
measurement matrix should be as consistent as possible with
the original signal structure. If the measurement matrix
destroys the structural information of the original data, the
reconstructed signal will be greatly distorted. Therefore, the

construction of an ideal measurement matrix is very important
for accurate image reconstruction.

In the theory of compressed sensing, the design and
construction of the measurement matrix has two aspects
according to the sparsity of the original signal. First, when
the signal is sparse, there is a problem in the design of the
measurement matrix, such as the test matrix δ in Equation
(9). According to the above analysis, the natural signal is
not sparse in most cases, so it is decomposed into a set
of transform basis φ and corresponding sparse coefficient
φ by sparse representation of the signal. After the linear
projection of the transformation base under the measurement
matrix δ, a new measurement matrix P = δϕ is obtained,
known as the compressed sensing matrix, which makes the
reconstruction of the signal become a problem when solving
the sparse coefficient. In order to accurately reconstruct the
sparse coefficient, the compressed sensing matrix P also needs
to meet RIP conditions, that is:

(1− δ)|ϕ|22 ≤ β|Pϕ|
2
2 ≤ (1+ δ)|ϕ|

2
2 (15)

According to the RIP property, the compressed sensing
matrix P satisfying the condition is approximately orthogonal.
RIP condition keeps the distance between the measured signal
and the original signal in a very small range, and ensures
that the measured signal energy is as close as possible to
the original data, so as to improve the accuracy of the
reconstructed data. Generally, the distance equation uses the
Euclidean distance as a measurement. Following the above
steps, the construction of an image compression perception
model is completed.

2.3 Using Machine Learning Algorithm to
Complete Image Reconstruction
Algorithm Design

The interference multispectral image compression and per-
ception reconstruction, according to its composition, involves
three stages: data acquisition, data processing and data
imaging (Petersen et al., 2018; Min et al., 2019). In order
to obtain better image results we use image processing results
from data acquisition and data processing to reference the
SVM decision tree in the machine learning algorithm to
complete the design of image reconstruction algorithm. The
steps are as follows:

Data acquisition: Selection of complete image training set
(Train) and missing image test set (test).

The software simulation package is used to simulate
the image data with different phase numbers to obtain the
data set Data = {(mi , ni ), i = 1, . . . , N }, where, N
represents the total number of sample sets, in which the data
of different phases is recorded as Datat

= {mt
i , nt

i , i =
1, . . . , N k, . . . ,M}, among them, M indicates the presence
of no more than M substances in the tube, and N k represents
the number of samples k phase substances. Data is divided

into training set Train =
k∑

i=1

n∑
j=1

Datat and test set test =

Data− Train.
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Table 1 Parameters of experimental data set.
Dataset number Number of images data dimension

1 2000 8
2 2000 4
3 2000 12
4 2000 6
5 2000 8
6 2000 4

The adaptive prediction model of phase number k based
on the SVM decision tree is established for the Train sample.
According to the different phase number k, the Train data
is classified and the training set Train after classification is
obtained; traini represents the training set sample with phase
i material in the predicted tube.

The data obtained above are preprocessed. When the image
parameters are determined, the multi-weight normalization
model ln =

li−lr

l M−lr is used to normalize sample traini to
obtain the training set (Train′) and test set (test′) after data
preprocessing.

Multispectral image reconstruction is a multi-classification
problem. The gray level of different media is used as the
label of samples for training modeling. Set the training set
Train, after data preprocessing as {(m̄i , ni )}

n
i=1, select the

appropriate kernel function k(m̄i ,mi ) and the appropriate
parameter l, construct and solve the optimization problem:

max
α

N∑
i=1

αi −
1
2

N∑
i=1

N∑
i=1

αiα j ni n j k (mi , ni )
(
β|Pϕ|22

)
(16)

s.t
N∑

i=1

αi ni = 0 (17)

where, 0 ≤ αi ≤ l. Equation (17) obtains the were optimal
solution αt

= (αt
i , . . . , α

t
n)

T . Using this result, the image
reconstruction equation is as follows:

f (m) = sgn

[ N∑
i=1

αi ni k (m,mi )+ b

]
(18)

In Equation (18) above, b is a specific point in the image.
Equation (18) has been established to integrate the data
calculation and realize the reconstruction of the multispectral
image. At this point, the design of machine-learning-based
interference multispectral image compression and perception
reconstruction algorithm is completed.

3. EXAMPLE TEST

In order to verify the reconstruction performance of the
interference multispectral image compression and perception
reconstruction algorithm based on machine learning proposed
in this paper, the corresponding test image is set in this section
for reconstruction experiments (Ren, 2021). In this section,
the algorithm designed in this paper will be compared with
the algorithms in Cao and Wen (2019), Fayez et al., (2019)
and Jia et al., (2019).

3.1 Experimental Data and
Environment Settings

The images used in the experiment are all from the ImageNet
database, which is the largest known image database at
present, and comprises numerous kinds of images. 12000
images of different types are selected from the database to
form five data sets, including animals, plants, buildings, etc.
The data set parameters are shown in Table 1.

Load the above data to the virtual platform. The specific
parameters of the platform are: CPU Intel i9, 3.75GHz; Hard
disk 1TB solid-state drive; Graphics card AMD; Memory 4G;
Operating system Windows 8.

3.2 Test Process

In the experiment, the high-resolution training images in the
test system are used as the training set, and these images do
not contain any non-multispectral elements. The image in
the training data is set to 200mm * 200mm. The original
algorithm and the design algorithm are used to reconstruct the
missing part of the training set image. In this experiment,
the reconstruction speed and stability of the algorithm are
compared and displayed as an image. In order to ensure the
effectiveness of this test, the testing is conducted on both
high- and low-computing platforms to better determine the
effectiveness of different algorithms.

3.3 Test Sample

In this test, four images are selected from the training set as
the sample. The specific image is shown in Figure 3.

Using the image as the test sample, the image is recon-
structed by the design algorithm and the original algorithm,
and the test results are obtained and analyzed.

3.4 Experimental Results

3.4.1 Experimental Results for
High-Computing-Power Platform

According to the above experimental results, as shown
in Figure 4(a), the higher the stability value of image
reconstruction using numerical representation, the better the
stability. When the calculation level of the test equipment is
high, the stability of the four algorithms in the test shows a
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Figure 3 Test sample.

gradual upward trend. The stability of the algorithm designed
in this paper is relatively high, the highest value of the
stability coefficient reaches 5, and the stability of the algorithm
directly reflects the function and effect of the algorithm being
applied. It can be seen that the algorithm designed in this
study performs better than the original algorithm. In terms
of the reconstruction time, the algorithm designed in this
paper achieves the shortest construction time compared with
that of the other four algorithms, and is always below 1.6 s.
It can be seen that the stability and reconstruction speed
of the algorithm designed in this paper are the best of the
four algorithms when the power of the computing equipment
is high.

3.4.2 Experimental Results for
Low-Computing-Power Platform

According to the experimental results, when the calculation
power of the test equipment is low, of the four algorithms
tested, the algorithm (Baturay et al., 2017) and the algorithm
(Zhan et al., 2019) are the most affected, and their stability

coefficient fluctuates. Although the algorithm (Jia et al.,
2019) has little change, its stability coefficient is still far lower
than the algorithm designed in this paper, which is relatively
stable. When comparing reconstruction times, the designed
algorithm requires the shortest amount of time. Therefore,
when the power of the computing equipment is high, the
stability and reconstruction speed of the designed algorithm
are still better than the other tested algorithms.

The results of the two experiments demonstrate that the
algorithm designed in this paper can achieve better results
in both high-performance and low-performance platforms.
This is because, in order to simplify the calculation process,
the internal structure and elements of a multispectral image
are encoded first. In the process of image coding, wavelet
transform technology can effectively improve the speed
of image processing, thus reducing the time required for
image reconstruction. At the same time, it takes into
consideration that in the actual environment, natural signals
are often not sparse and there not suitable for compression
and reconstruction. Therefore, by using another property of
natural signal, that is, by finding a set of transformation bases,
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Figure 4 Results for high-computing-power platform.

the decomposition coefficients of non-sparse natural signals
under the transformation bases are mostly zero except for
a small non-zero part. In addition to the sparse expression
of coefficients, a measurement matrix should be designed
to ensure that the data can be accurately reconstructed after
effective compression sampling, so as to improve the stability
of image reconstruction.

4. DISCUSSION

The interference multispectral compression sensing recon-
struction technology can obtain a reconstructed image at
a lower cost and does not require changing the hardware
condition of the imaging equipment. Therefore, since it
was proposed, interference multispectral compression and

perception reconstruction technology has become a research
hotspot in the field of digital image processing, which has been
comprehensively studied by scholars and research institutions.
A large number of excellent methods have been proposed
and applied to remote sensing imaging, medical imaging,
multimedia communication, public security and other fields.

In this paper, machine learning is used to optimize the
original reconstruction technology. The main work and
innovations are discussed below.

In order to eliminate the reconstruction error of direct
image processing, this paper proposes an image preprocessing
module based on wavelet transform. There are obvious push
sweep translation characteristics between the adjacent frames
of the interference multispectral satellite image sequence.
If the high-storage 3D wavelet transform is used directly,
the translation characteristics are not used, and the image

208 Engineering Intelligent Systems



S. ZHANG

Figure 5 Results of low-computing-power platform.

quality is not ideal. Therefore, it is necessary to study
an algorithm which can make full use of the correlation
of the image sequence and has low coding complexity.
According to the characteristics of interference multispectral
image and the requirements of the application environment,
a new compression algorithm of interference multispectral
image sequence is proposed. This algorithm does not need
a three-dimensional wavelet transform; instead, it uses only
the wavelet domain-matching algorithm to determine the
difference image between two consecutive images. When
coding the difference image, the system needs to store only
two frames, which reduces the coding delay and power
consumption. Moreover, the image quality is much better
in comparison with the results obtained by direct single frame
rate distortion optimized block code compression.

5. CONCLUSIONS

The existing reconstruction algorithms usually reconstruct
high-resolution image blocks by weighting the high-
resolution dictionary atoms according to a certain weight.
In order to solve the above problems, in this paper, an
interference multispectral image is designed based on machine
learning according to the requirement analysis of image
reconstruction algorithm in the practical application of a
compressed sensing reconstruction algorithm. The test
results show that the algorithm improves the deconstruction
ability of the image block, and eliminates the blur and
noise caused by interpolation by filtering the high-frequency
information of the training image when training a low-
resolution image, and improves the image reconstruction
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effect. Using the compressed sensing theory and spectral
imaging, the compressed sensing model is studied. The
compressed sensing theory is applied to the processing of
multispectral data and produces better results.
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