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Because the traditional similar sequential data search algorithm considers only one-dimensional data, its data search accuracy is low, and the search
data is not comprehensive. Hence, a similar sequential data search algorithm based on the dimension-by-dimension strategy is proposed. The
algorithm measures the similar time series data in order to fill in the missing data in a time series, searches similar sub-sequences in time series
data based on the strategy of dimension-by-dimension according to the data measurement results, gives a similarity threshold, queries the dynamic
time-bending distance between sequences and the starting position of sub-sequences and candidate sub-sequences according to the threshold, and
obtains the data by dynamically adjusting the search target hierarchical matching and search tasks. The experimental results show that under the
influence of different levels of interference data, compared with the traditional search algorithm, the search matching accuracy of the proposed search
algorithm is maintained at a relatively high level, the data search can obtain 89% of the expected search amount. Moreover, the process takes less
time, demonstrating that the performance of the algorithm is superior, and can meet the current search requirements of similar time series data.
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1. INTRODUCTION

In regard to time series mining, the similarity of time series is
the most basic and important problem. A similarity search of
time series data involves the query of time series with similar
change trends in time series data set according to existing
data. It is an important method used to analyse time series.
The similarity of sequences is not only directly related to time
series clustering and similarity search, but also provides basic
tools and a means of pattern discovery, data segmentation and
other tasks. At the same time, it also provides a reference
and basis for prediction and analysis of time series data,
which has potential broad application in intelligent policy-
making (Akshay et al., 2018; Hannan et al., 2018). By
developing an efficient time series data search algorithm,users
can find the similarity relationship between big data, which
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will greatly improve the application value of a time series
database. Therefore, the similarity problem of time series is an
important problem that requires an urgent solution (Loadsman
et al., 2017; Guido et al., 2018).

Liu et al. (2018), a kind of classified group index
method for sorting and searching efficient encrypted cloud
data is proposed. After classifying the data, the key
words are extracted according to the class to establish
the group index, and the encryption time of index and
query request is shortened by using several low-dimensional
encryption keys instead of high-dimensional encryption keys
(Liu et al., 2019). In addition, each group vector of the
group index method corresponds to different categories,
which not only updates the classification to improve the
flexibility of updating documents, but also generates targeted
trapdoors in the retrieval process, which improves the speed
and efficiency of the search. Although theoretical and
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experimental analysis shows that the method is feasible and
effective, the data search results are incomplete. Yang et al.
(2018) proposes a fast multi-keyword semantic ranking search
method for data privacy in cloud computing. Firstly, the
concept of domain weighted score is introduced in document
scoring to distinguish different weights given by keywords
(Jobaneh et al., 2019). Secondly, the semantic extension of
search keywords, semantic similarity calculation, semantic
similarity, domain weighted score and correlation score are
combined to construct a more accurate document index.
Finally, by matching the document marking vector and the
query marking vector, a large number of irrelevant documents
are filtered, which reduces the time required to calculate
the document correlation score and document sorting, and
improves the search efficiency. The experimental results show
that this method can achieve fast sorting and improves the
retrieval efficiency,but the accuracy of the data search presents
problems. Zou et al. (2018), a query optimization method
based on the Greenplum database is proposed,and an effective
cost model is designed to estimate the query cost. Then, the
parallel maximum minimum ant colony algorithm is used to
search the connection sequence with the minimum query cost,
that is, the optimal connection sequence. Finally, the optimal
query plan is obtained according to the Greenplum database.
The experimental results show that although this method can
effectively search out the required data, the accuracy of the
data search is not high enough.

In order to address the problem of single-dimension and
poor search results obtained by the traditional similar time
series data search algorithm, an algorithm based on the
dimension-by-dimension strategy is proposed. In order to
resolve the problems associated with the traditional algorithm,
the algorithm is intended to increase the accuracy of search
results, and to provide complete technical support for similar
time series data search of massive data.

2. SEARCH ALGORITHM OF SIMILAR
TIME SERIES DATA BASED
ON DIMENSION-BY-DIMENSION
STRATEGY

2.1 Measure Similar Time Series Data

Time series data has the characteristics of high dimension,
high noise, high complexity and instability. If the original
data is analyzed directly without preprocessing, the accuracy
and reliability cannot be guaranteed, and it is not conducive
to the efficiency of calculation and storage. Therefore,
it is necessary to preprocess the original sequence before
data analysis. The preprocessing methods mainly include
filling the missing time points, smoothing the sequence, and
normalizing the sequence. Time series refers to the sequence
of variables arranged in sequence with time. Each time point
can be a specific real value or a symbol for a specific pattern.
The following is the definition of time series. Given time
series X , there are:

X = x1, x2, . . . , x|X | (1)

In the formula, X (i) = xi , indicates that on the sequence
X , the value at the sampling time point i is xi , where xi

is a multi-dimensional value. Let X (g, f ) denote the sub-
sequence formed by sampling from the sequence X , starting
from the g time point and ending at the f time point:

X (g, f ) = xg, xg+1, . . . , x f −1, x f

X
(2)

Time series data is generally obtained from sensors and other
devices, which may cause discontinuity or defect of source
data due to faults and other reasons. In order to prevent the
time axis offset caused by data loss, the missing data needs
to be obtained before the analysis of the time series data.
According to Equation (1) and Equation (2) above, a new
time series is obtained with:

X1 = x1, x2, . . . , xi−1, xi+1, . . . , x|X |
X · X (g, f )

(3)

The data of the i time point is missing in the formula, that
is, the data xi is missing in Equation (3). For such data,
the current mainstream processing schemes are as follows:
through calculation, the missing time series data are discarded
directly; the missing data points are calculated. In order
to ensure the integrity and reliability of data, the statistical
method is used to calculate and fill the missing data. There
are two types of filling: the first is local mean filling where xi

is taken as the mean value within radius r , and there are:

xi =
j=i+r∑
j=i−r

X1( j)/2r (4)

In the formula, r represents the effective radius; j represents
the node coordinates of data missing location; X1( j)
represents the time series of node j . The second is local
high frequency value filling. x ′

i is taken as the value with the
highest frequency nearby. This is calculated with:

x ′
i =

i∑
i

X1( j)/p (5)

In the formula: p represents the frequency of occurrence of the
highest value near xi . By filling the missing data, the sequence
is smoothed. Known time series data are generally obtained
from sensor equipment, which is often subject to interference
by external factors, resulting in noise and a large number of
random fluctuations. In order to eliminate the interference
caused by these factors, it is generally necessary to smooth
the data. According to Equation (5), the data weighting in the
local range is used as the mathematical model of time series
data smoothing:

S =
r=|X |∑
r=1

x ′
i · xr (6)

In the formula: xr represents the time series data when the
effective radius is r ; β represents a attenuation function, 0 ≤
β(n) ≤ 1, which represents the influence weight of other time
points on the current value in the time series. The farther away
the data is from xi , the smaller is the impact on the smoothed
xi . For example, when the sequence X is missing, take xi
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Figure 1 Euclidean distance between sequences.

for β(0) = 1
2 , β(1) = 1

3 , β(2) = 1
6 , then the smoothed xi

value is:

xi =
1
6 x1 + 1

3 x2 + 1
2 x3 + 1

3 x4 + 1
6 x5

S − β(|i − r |)xr
(7)

In the same way, the smoothed time series data is obtained and
normalized. It is known that different time series data often
have different amplitude, period and absolute value, which
most similar search algorithms find it difficult to distinguish.
In order to eliminate the influence of these differences between
time series data on subsequent analysis, the following equation
can be used to normalize the data:{

xi = xi−min(X)
max(X)−min(X)

xi = xi−mean(X)
std(X)

(8)

In the formula: min(X) represents the minimum fluctuation of
time series data; max(X) represents the maximum fluctuation
of time series data; mean(X) represents the mean fluctuation
of time series data; std(X) represents the standard deviation.
According to the results obtained by Equation (8),similar time
series data are measured.

The similarity measurement of time series data is an
important sub-topic in time series data mining research, and
also the basis of time series data mining. The probability of
having two identical time series data is very small, so it is
necessary to measure the degree of similarity between two
sequences by means of a similarity measure or a distance
measure function. However, due to the complexity of
time series data itself, there are often translation, scaling,
discontinuity, nonlinear drift and mixed deformation along
the time axis in the data. In order to mitigate as much as
possible the impact of these problems on similarity measure-
ment, and improve the efficiency of time series similarity
measurement, the measurement of similar time series data is
completed according to the distance measurement function.
The commonly-used distance measurement functions include
Minkowski distance, Euclidean distance, DTW distance, LCS
distance and cosine similarity. In order to ensure the reliability
of the search algorithm, Euclidean distance is used to measure
the similarity.

Euclidean distance (ED) is the most widely-used and most
simple distance calculation method in sequence measurement.

Euclidean distance considers sequence X (length n) as a point
in Euclidean space of dimension n, and the coordinate value
of this point is the value of sequence X , so the Euclidean
distance of two sequences is the space distance between two
points in n dimensional space. It is known that the length of
two sequences X and Z is |X | and |Z | respectively. When
|X | = |Z |, the Euclidean distance between them is:

f (X, Z) =
√√√√ |X |∑

i=1

(xi − zi )2 (9)

It is simple to calculate Euclidean distance, making it suitable
for research domains that require highly efficient algorithms
and a small fluctuation range. However, for the two sequences
with different amplitudes or with offset or stretch along
the time axis, even if their fluctuation trend is similar, the
calculated distance may have a large deviation. For the two
sequences with small measurement distance, the waveform
difference between them could be large. This is due to the
noise and volatility in time series data, so similar sequences
will take on many forms, such as noise interference, time axis
translation, time axis expansion, nonlinear drift and data point
discontinuity, as shown in Figure 1.

On the whole, the two sequences in Figure 1 are similar,
with only a few offsets and stretches along the time axis.
When Euclidean distance is used for measurement, because it
is only the difference of corresponding points in a simple linear
accumulation sequence, and does not match the data with
offset or stretch, a large distance value will be generated after
measurement, which will affect the accuracy of subsequent
analysis.

To solve these problems, an improved Euclidean distance
algorithm is proposed. Before the Euclidean distance is
calculated, the sequence is normalized in sections to eliminate
the negative effects of the aforementioned deformation. In this
method, the sequence is divided into several sub-sequences of
equal length, and then each sub-sequence is normalized one by
one, instead of the whole sequence. In this method, different
weights are assigned to different positions of the sequence.
First, the alignment sequence W is divided into several parts
of equal length, and different weights are assigned to each
part, namely:
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W = w1, w2, . . . , w|W |, u1, u2, . . . , u|W | (10)

In the formula, W represents the alignment sequence; w|W |
represents the alignment sequence data value with length
|W |. According to Equations (9–10), the calculation formula
of similarity distance between sequence X and comparison
sequence W is obtained with:

f (X, W ) =
√√√√ |X |∑

i=1

λi (xi − wi )2 (11)

In the above formula, λi represents the similarity weight
corresponding to the i data. Through the above process, the
preprocessing of time series data is completed,which provides
the basis for more accurate measurement of similar time series
data.

2.2 Searching Similar Sub-Sequences
of Time Series Data Based on
Dimension-by-Dimension Strategy

After the similarity measurement results are obtained, the
time series data similar sub-sequences are searched based on
the dimension-by-dimension strategy. With the dimension-
by-dimension strategy, by introducing an adjustment factor,
similar sub-sequence searches can be carried out in multiple
associated time series data that have different dimensions and
levels.

The dimension-by-dimension strategy originates from the
iterative improvement strategy; that is, after one dimension of
information for a current individual is updated by a formula,
it will be combined with other dimension information for
the current individual to form a new individual, and then the
new individual is evaluated. Suppose the objective function
g(Y ) = y2

1 + y2
2 + y2

3 , and the i individual in the h generation
is Yh,i = (0.5, 0.5, 0.5) [8]. For individual Yh,i , randomly
select the information of dimension j to update, and the
default value is j = 1. Assuming that the dimension
information is updated from 0.5 to 0.2, the dimension-
by-dimension strategy combines the updated information
and other dimension information to form a new individual
�Yh,i = (0.2, 0.5, 0.5), and then evaluates the individual. It
should be noted that different selection strategies can be used
to select new individuals and current individuals. In addition,
the information in the dimension can be updated through the
dimension policy using the following formula:

Yh+1,i = �Yh,i + s(Yh, j − Yh,i )

f (X, W )
(12)

In the formula, s is the random number of interval (−1, 1);
Yh, j is the random individual of generation h. Similar
sequence search is the basis of classification, clustering and
anomaly detection in time series data mining. It is one of
the main tasks of time series data mining and has important
theoretical and practical value. Different from the normal
database query, the similar sequence search problem involves
finding the time series data which is only slightly different
from the given query sequence. At present, there are two types

of similar sequence search problems in the existing research:
similar full sequence search and similar sub-sequence search.
In the study of similar full sequence search, given a set M
comprised of multiple sequential data, its goal is to find
the sequence similar to the given query sequence N in M .
In the study of similar sub-sequence search, given a longer
sequential data V , its goal is to find the sub-sequence segment
similar to the given query sequence Q in V (Rinku et al., 2018;
Murtafi’ah et al., 2019).

A full sequence search is generally used in the mining
research on multiple time series data sets. For example, in
the clustering approach used for multiple time series data
sets, it is necessary to obtain the degree of similarity between
each time series data in the data set and several clustering
center sequences. In this case, the related research results
of a similar full sequence search can be used. Due to the
large scale of time series data produced in many application
fields, the overall processing is not very efficient, limiting
the scope of application of similar full sequence search. The
requirement of similar sub-sequence search is more common
in application. The problem of similar sub-sequence search
is extended to similar sub-sequence search, trying to find
those sub-sequences which are similar to the query sequence
from the given long-term series data. The relevant formal
definitions are as follows:

Given a similarity threshold σ , a query sequence N and a
multi-temporal data set M , if the distance between temporal
data V and N in M is less than σ , that is, E(V , N) ≤ σ ,
then N similarity full sequence search results for M include
V , which is a specific description of similarity full sequence
search. For similar sub-sequence search, given a similarity
threshold σ , a query sequence N and a time series data V ,
if the distance between sub-sequence V [tg, t f ] and N of V
is less than σ , there is inequality E(V [tg, t f ], N) ≤ σ , then
the search results of similar sub-sequence N for V include
V [tg, t f ] (Teng et al., 2018).

Specifically, Specifically, similar time series data sub-
sequences are searched based on dimension-by-dimension
strategy. According to given sequence V = {v1, v2, . . . , vm}
and sequence N = {n1, n2, . . . , nm}, the dynamic time
bending distance E(V [tg, t f ], N) between sub-sequence
V [tg, t f ] in sequence V and query sequence N , and the
calculation formula of starting position gv(t, i) between
candidate sub-sequence N[1, i ] and query sub-sequence V
are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(V [tg, t f ], N) = Yh+1,i · g(t f , m)

g(i, j) = dist (vi , ui ) + distbest

distbest = min

⎧⎪⎨
⎪⎩

g(i, j − 1)

g(i − 1, j)

g(i − 1, j − 1)

g(i, 0) = 0, g(0, j) = ∞

(13)

In the formula: distbest is the measurement result of similar
time series data after the step size information is updated by
dimension-by-dimension strategy. It can be seen from the
formula above that in the process of sub sequence search, it is
not necessary to recalculate the whole dynamic time bending
distance matrix because of the use of matching initial position
information. For each data in V , it is only necessary to
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Figure 2 The dominance relationship between individuals.

calculate the dynamic time bending distance and the starting
position of a column of elements in the matrix to solve the
online sub sequence search (Zhang et al., 2018).

2.3 Dynamically Adjust the Free Search
Target to Achieve The Hierarchical
Matching of Search Algorithm

The application of the dimension-by-dimension strategy to
search the similar sub-sequence of time series data may
not produce the best results. Therefore, it is necessary to
adjust the search target dynamically, obtain the key target
according to the multi-objective comparison and optimization,
and obtain the hierarchical matching of the search algorithm.
Similar sequential data search algorithms need to achieve
multiple different search objectives, so the multi-objective
optimization method is adopted. A solution may optimize
one of the functions, but it can also degrade the performance
of other functions. Therefore, in the case of multi-objective
optimization, each objective can be optimized only by trade-
off or compromise, and all objectives can be optimized as
much as possible (Jiang et al., 2018; Zhenilin et al., 2019). Its
mathematical form is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min b = f (a) = [ f1(a), f2(a), · · · , fm(a)]

s.t .gi(a) ≤ 0, i = 1, 2, . . . , u

h j (a) = 0, j = 1, 2, . . . , v

â = (a1, a2, . . . , an) ∈ T, b̂ = (b1, b2, . . . , bm)

T = {(a1, a2, . . . , an)|γi ≤ ai ≤ κi }
γ = g(i, j)(γ1, γ2, . . . , γn), κ = (κ1, κ2, . . . , κn)

(14)

In the formula:, â ∈ T , â is the decision objective space; T is
the variable dimension formed by the decision objective space;
b̂ ∈ g(t f , m) is the objective vector; m is the total number of
objective functions; gi(a) ≤ 0 is the inequality constraint
condition, the number is u; h j (a) = 0 is the equality
constraint condition, the number is v; γ and κ represents the
boundary value of ai . The appropriate solution for the multi-

objective optimization problem is not limited to one, but is a set
of optimal solutions that compromise all objective functions.
Generally speaking, these optimal solutions can also be called
non-dominated solutions, and the set of solutions is known as
a non-dominated solution set. The key to dealing with the
multi-objective optimization problem is to obtain the optimal
set so that the appropriate solution can be selected according
to the actual situation (Saer et al., 2018). The common basic
concepts of an optimal solution set are:

If vector a1 dominates a2, it can be recorded as: a1 ≺
a2, and satisfies: If fi (a1) ≤ fi (a2), i = 1, 2, . . . , m, then
it exists ∃i ∈ {1, 2, . . . , m}, fi (a1) < fi (a2). If a1 is the
optimal solution, then there is no other solution a2 	 a1 in
the feasible region. Figure 2 is a schematic diagram of the
dominance relationship between two individuals in the target
space.

Dynamically adjust the search target according to the
relationship in Figure. Let the number of individuals in the
population be m, and according to Equation (14), obtain the
position of the j individual in the n dimension optimization
search space, which is recorded as B j = (bp1, bp2, . . . , bpm),
ic represents the current evolution times, and IC represents
the total evolution number (Anna et al., 2018). In the search
space, the fitness kcj of multi-objective function of each
individual small step search c can be defined as:

kcj = p
�

p=1
k2

cj p, kcj p − k p(bcj i)γ (15)

In the formula: kcj p is the corresponding fitness of the p
objective function of individual j . In order to speed up the
search success rate of the algorithm, the starting point of the
individual’s next search is improved. The position with a high
kcj p value is taken as a new search point. The new round of
search points of individual kcj are defined as:

k̂cj = kcj p(kcj p ∈ max f (bi j , b2 j , . . . , bcj )) (16)

According to the new round of search points, the multiple time
series patterns are divided to realize the hierarchical matching
of the similar time series data search algorithm. There are
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many ways to express the pattern of multivariate time series,
but the most direct way is to express the multivariate time
series with the original data. This method can capture and
describe all the features of the original sequence accurately,
without missing information. However, in the face of a large
number of multiple time series databases, people are often
more concerned about whether they can grasp the overall
shape characteristics of multiple time series first, rather than
being concerned with a small detail. Therefore, according to
the time series feature points, the multi-element time series
is segmented and connected to these feature points, so that
the main shape of the sequence can be maintained after
transformation, and the original curve with a huge amount of
information becomes several straight-line segments. Then the
slope of each small segment is calculated. If the slope of this
paragraph is greater than 0, use 1, otherwise use 0. In this way,
the original complex multiple time series is transformed into
a matrix containing only symbols, simplifying the complex
problems, and achieving complete matching of similar time
series data through hierarchical search (Aysegul et al., 2018).

According to the trend feature of the extracted sequence, the
trend distance is calculated, and the sequence with a similar
trend is obtained and then added to the second candidate set.
In this rough trend similarity candidate set, the search range
is greatly reduced. At this time, Euclidean distance is used
to search the similarity of the original sequence. After the
original complex multivariate time series is transformed into
a symbol matrix containing only 0 and 1, similarity search is
carried out in the symbol matrix set, which is a process involve
the rough matching of sequence trends. During this process,
we need to give the corresponding similarity measurement
standard, that is, the definition of trend similarity. In this study,
the definition of trend distance is improved in the original
unitary time series, and it is extended to the definition of trend
similarity of multivariate time series: For two equal length
multivariate time series A and B , the character matrix P and
Q are respectively obtained after symbol conversion of their
sequences. If A and B meet the conditions:

T (A, B) = k̂cj −
∑
i, j

|Pi, j − Qi, j | ≤ σ (17)

The trends of multivariate time series A and B are similar. The
result set after the rough matching is regarded as the candidate
set for fine matching. For fine matching, Euclidean distance is
used to measure the similarity distance between two original
multivariate time series. This paper also uses the definition
of similarity of unitary time series for reference, and extends
it to the vertical moving similarity of multivariate time series.
Let two equal time series be A∗ and B∗. If A∗ and B∗ satisfy
the following formula:

T (A∗, B∗) =
⎡
⎣ n,m∑

i=1, j=1

⎡
⎣(b∗

i, j − a∗
i, j ) −

⎛
⎝ 1

mn

n−1,m−1∑
i=1, j=1

b∗
i, j

− 1

mn

n−1,m−1∑
i=1, j=1

a∗
i, j

⎞
⎠

⎤
⎦

2
⎤
⎥⎦

1
2

≤ σ ∗ (18)

Assume that multiple time series A∗ and B∗ are similar in
vertical movement. By calculating Euclidean distance and

fine matching, the final similarity set can be selected from the
candidate set to complete the similarity search task of multiple
time series. The similar sequential data search algorithm
based on dimension-by-dimension strategy is now realized.

3. EXPERIMENTAL STUDY

In order to test the reliability of the proposed similar time series
data search algorithm based on the dimension-by-dimension
strategy, a comparative experiment is conducted. The similar
time series data search algorithm based on the dimension-by-
dimension strategy is compared with the traditional Hannan
et al. (2018), Jiang et al. (2018) and Jobaneh. (2019) method,
and the results of the search matching using different methods
for similar time series data is analyzed, specifically in terms
of data search accuracy, data comprehensiveness. and data
search time. The test results enable conclusions to be drawn
about the effectiveness of each of the tested methods. For the
experiment, MATLAB software is used to process the data.

3.1 Analysis of Experimental Data and
Test Objects

The experiment was conducted using the steps described
below.

Randomly select a node system as the test object; the key
timing data nodes of the system are shown in Figure 3.

Connect the experimental test data to the nodes of the above
system. Take a website as the test background. Match the
system nodes, as shown in Table 1.

All website information is known to be connected with
the access point information of the test system. The data
with the largest per capita search volume obtained during 48
consecutive hours is used as the query sub-sequence. In total,
five independent query sub-sequences are selected. One query
sub-sequence is randomly selected for the real-time search of
related data, and the other four query sub-sequences are used
as alternative sequences. Figure 4 depicts the query diagram
of this query sub-sequence.

According to the query curve in Figure 4, in different query
stages, the amount of query data in query sub-sequences
is constantly changing. It can be seen that the query sub-
sequence meets the criteria for testing, and the experimental
test can begin.

3.2 Experimental Results and Analysis

In order to ensure the reliability of the experimental test, under
the two conditions of small amount of interference data and
large amount of interference data as the test premise, different
methods are used to carry out a search of similar timing data.
Figure 5 below shows the data search results indicating the
comparative accuracy of different methods when there is a
small amount of interference data. The accuracy is expressed
by a numerical value, specifically 0–1.0. The larger the
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Figure 3 Node numbers of test system.

Table 1 Information access distribution of various websites to be selected.
Number Website type Access node

01 Clothing and accessories 13, 14, 15, 16, 17, 18, 23, 24, 29;
02 Food and beverage 6, 7, 19, 20, 21, 22;
03 Travel accommodation 1, 2, 3, 4, 5, 8, 9, 30, 31, 32;
04 Traffic 18, 21, 32;
05 Daily supplies 13, 15, 20, 29;
06 Electronics 2, 4, 9, 24, 30;
07 Leasing information 13, 15, 18, 20, 21, 29, 32;
08 Skin care makeup 10, 11, 12, 25, 26, 27, 28;

Figure 4 Query diagram of query sub-sequence in test.

numerical value, the higher is the accuracy of the search
result.

As shown in Figure 5, when the key degree parameters of
the search target become larger and larger, the data search
accuracy of other methods, except for that of reference [5],
generally shows a downward trend, but the data search accu-
racy of the algorithm proposed in this paper is significantly
higher than the reference [5] method, the reference [6] method
and the reference [7] method. The curve trend in the graph
indicates that the accuracy of the search results for similar time
series data of the proposed search algorithm has been kept
above 0.5, while the search results for similar time series data
obtained by the method in reference [7] are below 0.3. This is
because, in order to eliminate the influence of different scales
of time series data on the subsequent analysis, the algorithm

in this paper normalizes the data and improves the accuracy
of the data search.

The premise of the test is the large amount of interference
data. The test results under different experimental conditions
are shown in Figure 6.

The curve trend in Figure 6 indicates that the data search
accuracy of the proposed algorithm decreases significantly
only when the critical parameter of the search target is 0–0.1.
Since the critical parameter of the search target is 0.1, there
is no significant decline. However, the traditional data search
method, due to the lack of data preprocessing, cannot remove
any interference when the amount of data is large. Hence, the
search algorithm based on dimension-by-dimension strategy
is proven to be more rigorous.

In order to further verify the effectiveness of the algorithm
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Figure 5 Experimental test results with small amount of interference data.

Figure 6 Experimental test results with large amount of interference data.

proposed in this paper, the comprehensiveness of the data
search is taken as the index to compare the data search results
of different algorithms. These results are shown in Figure 7.

The analysis of Figure 7 shows that the search results
obtained by the proposed algorithm for similar time series
data cover a wider range, while the coverage of reference [5]
method and reference [6] method is obviously not as high as
that of the proposed method, indicating that the data obtained
by this algorithm is more comprehensive. This is because the
algorithm does not consider that time series data is generally
obtained from sensors and other devices. These devices may
cause discontinuities or defects of source data due to faults
and other reasons. In order to prevent data loss caused by time
axis offset, the missing data is calculated before the analysis
of time series data, thereby improving the coverage of the data
search.

4. CONCLUSIONS

Similarity search is an important part of time series data
mining. The similarity search of multiple time series is closely

related to the definition of construction pattern.In this study,
which concerns the hot research topic of similar time series
data search, the pattern of sequence is defined from shape
feature, and a similar time series data search algorithm
based on dimension-by-dimension strategy is proposed. By
extracting feature points, this method can effectively discover
the shape features of time series. By means of hierarchical
matching, the trend similarity is confirmed, followed by the
confirmation of the similarity of details. Thus, the search
space is gradually decreased, and the accuracy and compre-
hensiveness of the search are improved. Experimental results
show that the algorithm reduces the amount of computation,
improves the efficiency of algorithm execution, and improves
the coverage and accuracy of the data search results. Although
this paper introduces the idea of a dimension-by-dimension
strategy and classification for time series similarity search,
and has solved some problems through experiments, this
theory and the experimental data results have limitations:
whether they can deal well with other kinds of data, and
have useful practical application, remains to be studied and
discussed.
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Figure 7 Comparison results of data search comprehensiveness of different methods.
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