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It is important to guarantee the stable and reliable operation of a power system to ensure power supply safety. The rapid expansion of emerging
power systems has brought significant challenges relating to power line inspection, especially under hazardous conditions. The existing vision-based
line inspection approach emerges as one promising solution. However, the required computation is prohibitive as it requires a convolutional neural
network (CNN) inference for each image frame. In this work, we address this problem by investigating block matching and extrapolation algorithms.
These two algorithms exploit the motion information in consecutive frames of real-time videos, thus avoiding the expensive CNN inference for every
image frame. According to the experiment evaluation, the processing rate is drastically increased by introducing a very limited amount of computation
that leverages the temporal pixel motion. Moreover, the precision loss is negligible when the window size is small while the rate of improvement is
significant.
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1. INTRODUCTION

The stable and reliable operation of a power system is a
fundamental guarantee to ensure power supply safety. The
growing dependence of contemporary societies on electrical
energy imposes tremendous challenges on the monitoring,
inspection, and preservation of electric-powered energy grids
to ensure the uninterrupted supply of electricity. The
transmission line is a critical component in the power supply
system and the safety of power transmission lines is closely
associated with the ordinary operation of the whole electricity
delivery system. Power outages caused by the failures of
power transmission lines are becoming more frequent with
the rapidly expanding grid infrastructure.

Conventional approaches to power line inspection typically
involve field surveys using manpower. However, the previous
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inspection methods are not realistic for modern power grids for
two reasons: 1) the rapid expansion of power delivery systems
significantly increases the human resources required for field
inspections; 2) the wide area covered by power delivery
systems, which includes harsh and complex environments,
means engineers face hazardous working conditions, such as
storms and hurricanes, which increases the risk level of power
line inspections. Hence, there is a trend towards the use of
unmanned aerial vehicles (UAVs) to assist with line inspection
tasks, enhancing inspection efficiency and safety. While
UAVs equipped with image acquisition modules improve the
accessibility of power line inspection, the transmitted images
mostly are manually analyzed by humans in the backend [1].
The emerging adoption of UAVs eases the difficulty of on-site
inspection, but still requires a large amount of human work.
As a result, overall system efficiency is still low.

To solve this problem, some computer vision (CV) pre-
processing techniques are used to further improve inspection
efficiency. The rapid development of deep learning algorithms
ensures the human-level accuracy of object detection. By
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analyzing continuous images transmitted by UAVs and
robotics, the line inspection processing pipeline can be
realized by introducing neural network models [2,3]. The
authors in [4] exploit convolutional neural networks (CNNs)
to analyze and screen the inspection contents through object
detection. Similarly, CNN is also adopted to recognize various
types of power line equipment with very strong robustness [5].
After the interesting contents of line inspection are extracted,
the workload associated with human inspection is significantly
reduced since most of the distracting and redundant content
in the collected on-site image sequences have been removed.

However, some drawbacks still exist in the aforementioned
works as they fail to take into consideration the feasibility of
a CNN-aided vision system for line inspection. According
to [6], the current CNN-based continuous vision system such
as SSD [7] and Faster R-CNN [8] requires a computational
complexity that is one order of magnitude higher than
the popular mobile devices. Despite investigating some
complexity reduction tricks [9–11], the pruned neural network
comes at a significant performance loss and the accuracy is
not guaranteed.

In this work, we focus on improving the continuous vision
system that is applied to detect power line anomalies, enabling
new schemes to be realized in real use cases. Instead of
increasing computing capability or reducing complexity, we
propose a novel motion estimation algorithm to discover the
motion information inherent in consecutive frames of real-
time videos. This avoids the need to perform an expensive
CNN inference on every frame, hence the processing rate
is drastically increased by introducing a limited amount of
computation that leverages temporal pixel motion.

The remainder of this paper is organized in the following
form. Section 2 presents the proposed fast scheme to
improve the processing rate of object detection for power line
inspection. The evaluation and corresponding experiments
are conducted and detailed in Section 3 to evaluate the
performance of our proposed algorithms. Finally, Section 4
concludes the paper.

2. PROPOSED RATE IMPROVEMENT
SCHEME FOR POWER LINE
INSPECTION

2.1 Computation of Convolutional
Neural Networks

In this section, we first briefly introduce the inherent com-
putation of existing CNN models. Then the computational
complexity of the key operation, convolution, is analyzed.
Throughout this paper, we consider deep CNN models to be
composed of several functional layers in the feed-forward
pattern. The commonly used functional layers include the
convolution layer, the fully connected (FC) layer, and the
pooling layer.

Each FC layer computes the linear combination of a
given input vector x with the weights matrix W. The
computation of FC layers can be realized through matrix-
vector multiplication. The convolution layer is the most

important component in the feature extraction task. For
each input feature map that has several image channels, the
CONV layer performs a two-dimensional (2-D) convolution
operation on the given input feature map and associated
filters in the shape of K × K . The hidden features within
the input images are extracted by the convolution layer by
performing 2D convolution on the input feature map I with
shape C × H × W using the M trained K × K filters W.
The yield output of the convolution layer, named the output
feature map O, with shape M × E × F can be described as
the following computation process (See Figure 1):

O[m, e, f ] =
C∑

c=1

K∑

i=1

K∑

j=1

I[c, e × S + i, f × S + j ]

× W[m, c, i, j ].

where W ∈ R
M×C×K×K is the weight tensor composed of M

trained filters. It should be noted that each filter contains one
C-channel kernel in the shape of K × K while f (·) represents
the activation function. Based on different tasks, the popular
activation functions include the rectified linear unit (ReLU)
f (x) = max(x, 0) and the sigmoid activation f (x) = (1 +
ex p−x )−1.

The 2D convolution is a type of computation-intensive
arithmetic operation, which requires significant multiply-
accumulate (MAC) operations. According to the analysis the
Figure 1, the computation complexity caused by convolution
takes up over 90% of the overall CNN inference. Taking
Figure 1 as the example, for a convolution layer which receives
an input feature map Iwith the shape C×H×W and produces
output that has the shape M × E × F , the required number of
MAC operations is given by:

MACCONV = 2 · E · F · K 2 · M · C,

where K 2 MAC operations are needed for each channel of
each filter.

For a continuous video with a frame rate of R, assuming
that we process each incoming frame independently, a total
of R frames of images should pass the CNN model and the
inference should be performed R times per second. As a result,
the total computation complexity per second is as follows:

MACTotal =
L∑

i=1

2 · R · Ei · Fi · K 2
i · Mi · Ci ,

where L is the number of convolution layers. For simplicity,
here we only consider convolution complexity since convo-
lution operation contributes to the majority of the overall
complexity.

The complexity introduced by CNN inference is prohibitive
compared to the limited computing power of traditional
computer architecture. One idea is to reduce the required
arithmetic complexity by using fast convolution algorithms,
such as Winograd and fast Fourier transform (FFT) [12].
Although fast algorithms can accelerate the inference speed of
CNN given the same computing resources, the speedup effect
remains insignificant when the frame rate of videos is high.
In the following sections, we introduce our proposed scheme
to improve the processing speed of CNN-based power line
inspection.

280 Engineering Intelligent Systems



X. ZHANG ET AL.

Figure 1 Illustration of convolution computation in CNN.

Figure 2 The proposed processing pipelines for power line inspection.

2.2 Motion Estimation for CNN

In this section, we present the details of our proposed
motion estimation algorithm that improves the continu-
ous object detection rates for power line inspection. To
effectively solve the contradiction between computational
complexity and limited computation resources, we utilize
two techniques, block matching (BM) and ROI extrapolation,
to enhance the processing rate by adding a very limited
computation workload. The proposed system design increases
the practicability and efficiency of the continuous vision
system that is responsible for power line inspection. The
proposed processing pipelines for power line inspection
are illustrated in Figure 2. The proposed design comprises
several parts, which are explained in detail in the following
sections.

(1) Block Matching

Motion estimation is a popular image processing algorithm
that estimates how the collected pixels are moving between
consecutive image frames. Motion estimation is one of
the most crucial algorithms applied to image processing
since video denoising and stabilization both require motion
information. Temporal denoising uses pixel motion infor-
mation to remove noisy pixels by replacing the noise-free
data in previous frames. Moreover, up-sampling is able to
increase the frame rate through intersecting interpolating
frames be- tween successive real frames. Block matching
[13] is the most widely used motion estimation algorithm
since it achieves a good trade-off between accuracy and
efficiency.

The basic calculation of BM is conducted in the following
steps. Due to the space limitation, we only present the main
ideas here. We refer interested readers to [13] for more details.

First, BM divides an image frame into L × L macroblocks.
For each MB, the algorithm searches for the closest matched
one in the previous frames by adopting the sum of absolute dif-
ferences (SAD) as the matching metric for all L2 macroblocks.
The search process is performed within a 2-D window with
a total of (2d + 1) × (2d + 1) pixels, where d is the search
range.

The key factor in different BM search strategies is to
trade-off between matching accuracy and computational
complexity. The traditional accurate approach is to perform
an exhaustive search, which requires a large amount of
computation with a complexity of L2 × (2d + 1)2 operations
for each macroblock. The other BM search schemes improve
computation efficiency by reducing the arithmetic complexity
at the cost of a slight loss in accuracy. The three-step
search (TSS) searches only a small range of the search
window by decreasing d , thus reducing the number of
required operations to L2 × (1 + 8 log 2(d + 1)) for each
macroblock.

Finally, the BM algorithm obtains the motion vector
(MV) for each macroblock that defines the pixel offset
between one specific macroblock and its closest matched
block in the previous frames. The MV can be treated as
the estimation of each macroblock’s motion. Specifically, an
MV < u, v > of a macroblock at coordinate < x, y >

denotes that the macroblock moves from the coordinate
< x + u, y + v > in the previous frame. The required
storage memory space for MVs is low since the MVs can
be efficiently encoded and stored. In this case, a total of
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Figure 3 The system architectures of the proposed sensor node.

�log2(2d + 1)� bits are enough to preserve the needed
information.

(2) ROI Extrapolation

Typical vision applications, object tracking and object
detection, involve localizing and classifying multiple objects
within an image by bounding the objects with boxes, named
the region of interest (ROI). CNN models are widely used
and dominate the tracking and detection tasks since CNNs
have powerful feature extraction capabilities. However,
performing an inference for every incoming image frame
requires a huge amount of computing resources and is
unrealistic for real implementations.

Based on [6], we propose an ROI extrapolation scheme
to improve the processing rate of object detection for
power line inspection. The essential idea is to exploit
the temporal motion information and predict the ROI while
avoiding unnecessary CNN inferences. Large parts of ROI
are estimated and predicted by BM and ROI extrapolation
algorithms. Compared to the expensive CNN inference,
BM and ROI extrapolation require far less computation.
Therefore, given the same computing capability, our proposed
scheme can significantly improve the processing rate.

The ROI extrapolation aims at accurately estimating ROIs
using the MVs for a specific frame without performing CNN
inference. The first step is to calculate the average motion
vector μ for a ROI according to vector vi as shown in the
following Eq. (4):

μF =
N∑

i=1

vi

N
,

where N is the total number of pixels inside the ROI, and vi

represents the MV of the i -th pixel within the bound.
The BM algorithm introduces noise to the MVs, making it

unable to find the idle matched block, the noise is evaluated
using the following SAD-related metric:

αi
F = 1 − SADi

F

255 × L2 ,

where SADF represents the SAD value of the i -th macroblock
in frame F . The SAD-related metric is finally normalized into
the range of [0,1].

The SAD-related metric is useful to filter the introduced
noise of BM using the following equation, which is calculated
in a moving average manner:

MV F = β × μF + (1 − β) × MV F−1,

The location associated with the new ROI is updated by
combining the previous frame and the obtained MVF as
follows:

RF = RF−1 + MV F−1.

The ROI extrapolation that utilizes the pixel-level temporal
motion information greatly simplifies the complexity of
continuous vision tasks. Recalling Eq. (3), the required total
complexity with ROI extrapolation is:

MACextra = W ·L2 ·(2d +1)2+
L∑

i=1

2· R

W
·Ei ·Fi ·K 2

i ·Mi ·Ci ,

where N denotes the number of convolution layers while W
is the window size of extrapolation. In this case, the costly
CNN inference is reduced by a factor of W .

3. EVALUATION RESULTS

Based on the proposed algorithms, we conduct a detailed
evaluation. In this section, the experiment parameters
are presented in the case of power line inspection. Our
proposed scheme is evaluated using the YOLO algorithm
which employs CNNs [14]. The results are also compared
with other methods to demonstrate the effectiveness of the
proposed algorithms.

3.1 Experiment Setup

(1) Simulation Platform

The detailed specifications for the simulation and experiments
are given as follows. The baseline YOLO model is
implemented on the deep learning platform PyTorch [15]. We
use the pre-trained YOLO which is available on PyTorch for
a fair comparison. The inference of YOLO [14] is performed
on one Nvidia Titan X GPU equipped with the Intel Xeon-E5
1660 CPU. For simplicity, the motion estimation algorithm is
implemented using the Python language. Therefore, all the
proposed schemes are run and tested on software.

To fully exploit the computing power of the GPU card
and the error redundancy of the CNN model, the YOLO
net is quantized with a INT8 data format, which gains near
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Table 1 The used parameters for motion estimation.

Parameter Value
Window size W = 2, 4, 8, 16
Macroblock number L = 8
Search range d = 8

Table 2 Comparison of average precision using different augmentation algorithms and IoU thresholds.

Algorithms IoU Thres = 0.1 IoU Thres = 0.3 IoU Thres = 0.5
Original 72.2% 69.2% 55.4%
Ex-ROI-W = 2 71.5% 67.7% 50.1%
Ex-ROI-W = 4 70.4% 65.2% 47.2%
Ex-ROI-W = 8 70.1% 57.6% 41.5%
Ex-ROI-W = 16 68.7% 51.1% 37.2%

Figure 4 Computational complexity for different ROI extrapolation schemes and the original YOLO model.

4× speedup compared to the FLOAT32 quantization. The
introduced accuracy degradation is negligible. The input of
the tested model is composed of cropped video sequences
with a resolution of 960 × 960. The video is captured
by the camera on a DJI Mavic 2 drone. The original
high-resolution video is resized into a low-resolution ver-
sion since a higher resolution requires more computing
resources.

(2) Parameter Selection

For the block matching and ROI extrapolation algorithms,
there are several key parameters to be determined. These
parameters include the number of macroblocks L, the
extrapolation windows size W , and the search range d .

These parameters are selected empirically and we also refer
to the parameter selection in [6]. Table 1 summarizes the
used parameters for motion estimation. Four extrapolation
window sizes, W = 2, 4, 8, 16 are chosen to achieve a balance
between accuracy and the processing rate improvement. The
number of macroblocks is set to L = 8 while the search
range is set to d = 8, based on the typical values
in [6].

3.2 Experiment Results

The experiment results are given in this section to evaluate the
proposed algorithms. A comparison is also given in Table 2.
First, the standard Intersect-over-Union (IoU) metric is used as
the accuracy metric for object detection. IoU denotes the ratio
between intersection and union areas between the predicted
ROI and the correct results. One detection is considered as
the true positive if the IoU value exceeds the threshold.

First, we test the degradation loss introduced by the BM and
ROI extrapolation schemes. The performance comparison
using various augmentation methods is shown in Table 2.
The results for four different window sizes W = 2, 4, 8, 16
are shown. The ROI extrapolation leads to some degree of
average precision loss. But the degradation is acceptable when
W <= 8, considering the processing frame rate is improved
by a factor of W. The results show that the proposed ROI
extrapolation method is necessary in the case of continuous
vision-based power line inspection.

We also conduct a comparison regarding computation
complexity with the original CNN model, as shown in
Figure 4. Since ROI extrapolation avoids the expensive CNN
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inference, large amounts of MAC computation are saved. As
a result, nearly linear speedup is achieved, which means that
the process frame rate is also improved by around a factor of
W. However, more significant acceleration comes at the cost
of higher accuracy loss.

4. CONCLUSION

In this paper, we aim at improving the processing rate of a
continuous vision system that is applied to detect the power
line inspection task, making the new schemes realizable in
real use cases. Instead of increasing computing capability or
reducing complexity, we propose a novel motion estimation
algorithm to discover the motion information inherent in
consecutive frames of real-time videos. This avoids the need
to perform expensive CNN inference on every frame, hence
the processing rate is drastically increased by introducing
a very limited amount of computation which leverages the
temporal pixel motion. The experiment results show that the
precision loss is negligible when the window size is small
while the rate of improvement is significant given the same
computing resources.
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