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Improving the efficiency of the charging network is key to the development of electric vehicles, and is also an important process in the commercialization
and industrialization of electric vehicles. Ensuring the convenient layout of charging stations is important in terms of infrastructure investment,
operational safety and the quality of charging stations. If the location and capacity of charging stations are not appropriate, this may affect the travel
convenience of users and the planning and layout of the urban transportation network, thus affecting the wide application of electric vehicles. It may
also lead to a significant increase in power consumption and a significant drop in the voltage of some nodes. The location and capacity of charging
stations must be optimal for the convenience of electric vehicle users and to improve the operational benefits of charging stations. By comprehensively
considering the various influencing factors of charging stations, three important indicators affecting the planning of charging stations, namely economy,
average utilization rate of charging stations and charging convenience of users are constructed. The multi-objective planning model of electric vehicle
charging stations was established and the designed double-layer coding method was used to optimize the evolutionary algorithm to solve the problem.
Finally, an example is given to illustrate the effectiveness of the proposed model and the evolutionary algorithm for design optimization. An improved
evolutionary algorithm is used to analyze a city example.
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1. INTRODUCTION

Charging facilities such as charging piles, battery change
stations and so on, are necessary and important supporting
infrastructure for the development of electric vehicles [1].
In cases where charging facilities are newly established and
the requirements of the energy supply network have not
yet been determined. The rapid establishment of a number
of public charging stations can have an important effect
on the promotion and popularization of electric vehicles
[2,3]. In the process of electric vehicle technology research,
development and manufacturing, the construction of electric
vehicle related infrastructure must be properly considered
[4,5]. The systematic construction of electric-vehicle-related
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support facilities is crucial to the expansion of the electric
vehicle market [6]. With the continuous development and
use of electric vehicles, the planning and construction of
charging stations will become large-scale and networked, so
it is urgent to study the optimal layout of charging stations.
In this study, many factors affecting the planning of electric
vehicle charging stations are comprehensively considered [7].
To ensure the economic optimization of station construction,
the utilization rate of charging stations and the charging
convenience of users are also taken as the optimization goals,
and a multi-objective overall planning model is established to
achieve a balance between the three indicators.

2. MODEL ASSUMPTIONS

The configuration of charging machines in a charging station
should not only meet the charging needs of users, it should
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also avoid a situation where resources are idle. In this
study, the average utilization rate of charging stations is
taken as an optimization goal for the location selection of
charging stations to determine the optimal location of charging
stations [8]. The convenience of charging will directly affect
the purchase behavior of consumers in relation to electric
vehicles. Therefore, the convenience of charging stations is
also an important aspect to consider in the location selection
of charging stations. On this basis, the model assumptions
include:

(1) The candidate points of charging stations all consider the
demand distribution and meet the environment and safety
conditions of charging station construction;

(2) The demand at each demand point is related to the total
number of EV charging needs in this small area and
represents the number of vehicles that need to be charged
every day;

(3) In a fixed period of time, users at each demand point can
only go to the same charging station for charging;

(4) Within the permissible range of charging station con-
figuration, the distribution between demand points and
charging stations will be conducted in accordance with
the nearby place.

3. MODEL BUILDING

3.1 Objective Functions

The objective functions required for model construction
specifically refer to the economic index, the average utilization
index of the charger, and the user’s charging convenience
index.
(1) Economic index

The economy proposed in this paper includes the annual
investment and operation costs of charging stations and the
annual charging costs of users. The mathematical expression
is as follows:

min F = min(F1 + F2) (1)

1 Annual investment and operation costs of charging stations
Annual investment operating costs include two items:

annual fixed investment and annual operating costs. The fixed
investment includes the initial construction and installation
costs of chargers, distribution transformers and other auxiliary
equipment, land acquisition, auxiliary road construction and
so on [i]. Operating costs include the daily operation and
maintenance of charging stations and staff salaries.

The scale of a charging station is measured by the
number of chargers, which is the main determinant of fixed
investment in a charging station. The greater the number
of charging machines, the more vehicles can be served, so
the larger the area of use, the greater the corresponding land
acquisition costs, equipment purchase costs and other fixed
costs. Also, the more managers which are needed, the higher
the operational and maintenance costs. Therefore, both fixed
investment and operating costs are functions of the number

of chargers. Annual investment operating expenses can be
expressed as:

F1 =
∑
j∈J

C j

[
T (N j )

r0(1 + r0)
nyear

(1 + r0)
nyear − 1

+ Y (N j )

]
(2)

where J is the set of selected candidate points of charging
stations; C j is a 0–1 variable, where, if a charging station is
established at candidate station j , then C j is 1; otherwise, it is
0;N j is the number of chargers to be built at candidate stations
j ; T (Nj ) is the fixed investment cost function of candidate
station j ; Y (Nj ) is the annual operating cost of candidate
station j ; r0 is the discount rate; and n0year is the depreciation
life of the charging station.

2 Annual charging costs of users
The charging costs of users include indirect costs such as
electric power consumption for charging, the replacement
costs of battery loss and the economic benefits caused by
charging occupation time and so on. These fees are mainly
determined by the distance between the charging demand
point and the charging station and the user’s electricity bill
at the time of charging. The user’s annual charging cost can
be expressed as:

F2 = 365

[
ω

∑
j∈J

∑
i∈I

Xi j niλdi j + k
∑
i∈I

ni

]
(3)

In formula 3, I is the collection of charging demand points;
ω is the charging cost per unit distance during charging; Xij

is a 0-1 variable, where if the demand point i receives service
at the candidate point j , then Xij is 1, otherwise, it is 0; ni

is the number of vehicles requiring quick charging every day
at the demand point; λλ is the non-linear coefficient of the
urban road; di j is the spatial straight-line distance between the
demand point and the candidate station; and k is the average
price of a fast charging electric car at this stage.

The average utilization index of the charger
An excessive number of chargers in a charging station is

bound to result in idle resources. However, if the number of
chargers is too small, the charging station will not meet the
needs of users and it will make the queuing time for charging
too long, resulting in inconvenience for users [ii]. Therefore,
ensuring the utilization rate of the charging machine in the
charging station is the key index to investigate the constant
capacity of a charging station.

Charging stations are not busy all the time and there will be
certain vacancy periods (for example, users generally charge
their cars during the day so charging stations are generally
empty at night). To illustrate this, we define the following
symbol:

η is the user arrival rate, that is, the average arrival rate
of electric vehicles to charging stations, and the number of
electric vehicles arriving at charging station j per hour is
calculated as follows:

η j = K · ∑i∈I Xi j ni

T
(4)

In formula 4, K is the proportion of vehicles serving the non-
vacant period compared to the number of vehicles serving the
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full time period; T is the duration of the non-vacancy period;
μ is the average service rate (or the average charging capacity
of the charger), which is the average number of vehicles a
charger can serve per hour.

Therefore, the average utilization ratio of the charger can
be expressed as:

lim
ϕ

:ϕ = 1

M
·
∑
j∈J

η j

N j μ
(5)

In formula 5, M is the number of charging stations to be built.
User’s charging convenience index
Charging stations are constructed to provide a convenient

service to users, so the convenience of charging is an important
indicator of the location of charging stations. In this paper, the
charging convenience of users is represented by the average
distance of each user to the corresponding charging station.
The charging convenience of users can be expressed as:

min σ =
∑

j∈J
∑

i=I Xi j di j ni∑
i∈I ni

(6)

3.2 Constraint Conditions

Constraint conditions include variable constraints, inequality
constraints of charging station charger configuration, in-
equality constraints of distance between charging stations
and inequality constraints of the distance between charging
demand points and charging stations.

(1) Variable constraints

Users with the same charging demand point can only charge
at the same charging station:∑

j

Xi j = 1∀i = 1 (7)

Charging services can only be provided for users if charging
stations are selected and established at the candidate points:

Xij < C j ,∀i ∈ I, j ∈ J (8)

0 − 1 variables:

C j ∈ {0, 1}, ∀ j ∈ J (9)

Xij ∈ {0, 1}, ∀i ∈ I, j ∈ J (10)

(2) Inequality constraints of charging station charger config-
uration

Nmin ≤ N j = Nmax, j ∈ J (11)

In formula 11, Nmin and Nmax are the maximum and minimum
chargers configured at the charging station respectively.

(3) Inequality constraints of distance between charging
stations

To ensure the charging station layout density is not too large,
the distance between stations is constrained as follows:

λD j j ′ ≥ Dmin, j, j ′ ∈ J ; j �= j ′ (12)

In formula 12, D j j
′ is the distance between charging station j

and j
′
; and Dmin is the minimum distance between charging

stations.

(4) Inequality constraints of the distance between charging
demand points and charging stations

To avoid the need for EV users to drive a long distance
to a charging station, the distance constraint from charging
demand point to charging station is:

Xij di j ≤ dmax, ∀i ∈ I, j ∈ J (13)

In formula 13, dmax is the maximum distance that the user can
travel to charge their car battery.

4. ALGORITHMS DESIGN

4.1 Introduction to Improved
Evolutionary Algorithms

The improved evolutionary algorithms enhance the fitness
allocation mechanism and introduce the concept of the
minimum neighbor density estimation mechanism [iii]. A
more accurate guidance in the search process improves
the diversity of the population and preserves the marginal
individuals of the optimal front end of Pareto. With fewer
parameter settings, a fast convergence speed and a strong
searching ability, the distribution of the Pareto optimal
solution obtained is uniform. When there are more objective
functions, the convergence of the bounds can still be made in
the direction of the optimal Pareto front end.

4.2 The Process of Improved
Evolutionary Algorithms

The process of improved evolutionary algorithms is as
follows:

(0) Generates an initial population P0 and an empty external
file A0, setting t = 0.

(1) The fitness values of individuals in population Pt and
external archive At are calculated.

(2) Determine P0 = {xi |xi ∈ Pt ∪ At Not bad}, if At+1
is larger than N , then trim At+1; if the size of At+1 is
less than N , then the dominated solution of Pt and At is
added to At+1 until its size is equal to N .

(3) If t > T , then output the external file At+1 and stop
searching.

(4) For external file At+1, select individuals in the mating
pool using the binary tournament method with substitu-
tion.

(5) Cross and mutate the mating pool and population Pt+1,
t = t + 1, and go to step (2).

The process of improved evolutionary algorithms is shown
in Figure 1:
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Figure 1 The process of improved evolutionary algorithms.

Figure 2 Examples of feasible solutions of the first layer coding.

4.3 Optimization of Improved
Evolutionary Algorithms

There are two decision variables in this model: whether
to build a station at candidate station j , whether to build
the site scale C j at candidate point j. There is also an
intermediate variable: whether demand point i to candidate
point j accepts service Xij . Aiming at the particularity of the
problem of charging station location and capacity, the specific
implementation method of the algorithm is given.
(1) Chromosome coding.

Chromosomes are encoded in a two-layer structure. The
first layer encodes whether the candidate stations have
established charging stations. A fixed number of stations to be
built are selected from a certain number of candidate stations
after inspection from various aspects and binary coding is
adopted. According to:

C j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, Establish a charging station at

candidate station j

1, No charging station is established at

candidate station j

then the coding length of the first layer is the number of
candidate stations J , the element 1 in the code represents
the establishment of a charging station and the number of 1
is M (the number of charging stations to be built). The other
elements are 0 for no charging station. For example, select
5 stations to be built from 10 candidate stations. Examples
of feasible solutions of the first layer coding are shown in
Figure 2:

The first layer codes the construction location of the
charging station and the second layer codes the scale of the
station to be built. The second layer of coding corresponds in
turn to the construction scale in which the element in the first
layer of coding is 1(i.e. the station to be built). Since N j is an
integer variable, binary coding is still used when coding the
size of the station.
(2) Design idea of the genetic operation

1 Choose a strategy. The proportional selection operator
is adopted here, which means that the probability of
an individual being selected and copied to the next
generation is positively correlated with its fitness value.
Roulette wheel selection is usually adopted, which is
based on the principle that the probability of an individual
being selected is based on the relative fitness of the
individual.

2 Cross-operator design. To effectively solve the legality
and validity of the new solution after the coding crossover
designed in this paper, the design idea of the crossover
operator in this paper is as follows: first, the first layer
of coding is crossed, and then the second layer of coding
is crossed. The second layer conducts the crossover
operation on the scale of each station to be built to realize
that each station size to be built has the opportunity
to obtain crossover operation. A single point crossing
method is used to cross layers. A multi-level coding
cross-operation flow chart is shown in Figure 3:

3 Mutation operator design. First, the mutation condition
must be satisfied. If it is satisfied, the chromosome
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Figure 3 Multi-level coding cross-operation flow chart.

mutation will be achieved. Discontent stays the same.
If the mutation condition is satisfied, a decision is again
made as to whether to carry out the mutation in the first
layer or the second layer. If the second layer of coding
varies, but also a decision must also be made as to which
station to build the scale of the station variation.

(3) Fitness evaluation
Calculate the three index values corresponding to individual

i in the population and the external file and give i an intensity
value S(i), denoting the number of solutions dominated by
the individual.

S(i) =
∣∣∣{x j ∈ Pt + At , xi ∼ x j

}∣∣∣ (14)

On the basis of S(i), the original fitness value R(i) of
individual i is equal to the sum of the strength values of all
the individuals that dominate the individual:

R(i) =
∑

x j ∈Pt+At ,xi∼x j

S( j) (15)

In the calculation of R(i), both the population and the
individuals in the external archive are taken into account, and
the smaller the original fitness value, the fewer individuals
dominate the individual. R(i) = 0 means that individual
i is non-cleaved. The density D(i) of the individual was
calculated by using the k-nearest neighbor method.

D(i) = 1

σ k
i + 2

(16)

where σ k
i is the distance between individual i and the k-nearest

neighbor in the target space, k =
√

N + N .

Finally, the fitness value F(i) of individual i is the sum of
the original fitness value and the density value:

F(i) = R(i) + D(i) (17)

(4) Performance evaluation of the design algorithm
Because of its inherent parallelism, the evolutionary algorithm
has the potential to find multiple optimal solutions in a single
simulation run. However, in more complex applications,
it is difficult for evolutionary algorithms to generate non-
cracking, let alone the entire non-cracking set. Minimizing
the distance between the resulting non-cracking front and the
optimized front is one of the performance indicators of multi-
objective optimization. The distance between the obtained
non-cracking front and the optimal solution front is taken as
the criterion to evaluate the algorithm performance.

The non-inferior solution set A ∈ X P and the distance
formula are given and a function is introduced to evaluate the
quality of the relevant decision space. The function gives the
distance to the optimal solution set:

M(A): = 1

|A|
∑
a∈E

min
∣∣{|a − x |x ∈ X p

}∣∣ (18)

5. NUMERICAL EXAMPLE

5.1 Example Description

To verify the effectiveness of the model and algorithm
proposed in this paper, a case study on the location and
capacity of charging stations is analyzed. The development
area is 10.5km2, divided into 30 functional areas, mainly
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Table 1 The positions of demand points and the corresponding demands.

Number X Y Demand Number X Y Demand
1 11.68 8.56 36 16 11.05 3.86 43
2 5.67 5.26 49 17 5.05 8.14 50
3 1.45 12.03 35 18 12.14 11.28 41
4 2.08 1.47 41 19 5.64 1.39 29
5 11.67 8.54 38 20 6.89 1.39 42
6 12.25 9.26 55 21 6.14 8.54 37
7 12.33 2.04 39 22 7.53 9.64 33
8 6.27 3.28 45 23 10.89 5.56 45
9 6.22 11.75 53 24 2.35 6.38 42

10 7.75 2.08 51 25 10.48 8.01 40
11 12.59 9.35 36 26 1.58 6.48 37
12 11.85 4.29 55 27 7.35 10.25 40
13 10.73 7.05 58 28 2.17 1.05 39
14 12.15 2.25 47 29 1.86 4.78 42
15 3.17 8.04 45 30 6.54 10.75 46

Table 2 The location of the candidate stations.
Number X Y Number X Y

1 6.22 11.75 9 10.48 8.01
2 11.85 4.29 10 10.89 5.56
3 10.73 7.05 11 7.53 9.64
4 11.67 8.54 12 11.05 3.86
5 12.25 9.26 13 12.14 11.28
6 11.68 8.56 14 6.54 10.75
7 3.17 8.04 15 7.35 10.25
8 12.15 2.25

residential, commercial, office and so on and it is roughly
divided into 30 charging demand points. Combined with
the research practice, the site is to be selected from the 15
candidate charging stations that meet the requirements of
station construction. The purpose of site selection is to select
8 stations for the construction of charging stations from the
15 candidate points. The number of electric vehicles at each
charging demand point is related to the regional economic
development and residents’ consumption level. The data is
investigated and the charging demand of each demand point
is calculated. The positions of the demand points and the
corresponding demands are shown in Table 1:

The location of the candidate stations is shown in Table 2:

5.2 Parameter Settings

The binomial model of the number of chargers N j for fixed
investment in charging stations is as follows:

T (Nj ) = W + q Nj + eN2
j (19)

The binomial model of the number of chargers W for fixed
investment in charging stations is as follows: W is 1 million
yuan; q is the investment related to the unit price of the charger,
which is set as RMB 50,000 per unit; e is the equivalent
investment coefficient related to the number of chargers,
including land acquisition costs and supporting facilities, etc.,
which is set as RMB 20,000 per charger.

Annual operating expenses Y (Nj ) are set at 10% of fixed
investment costs; the depreciation life of the charging station
is nyear ; r0 is 0.08. The charging cost per unit distance on
the way to charging is 8 yuan/km. The non-linear coefficient
of urban roads is 1.2. At present, the average price of quick
charging for an electric vehicle is 4 yuan per vehicle; the
proportion of the number of vehicles in non-vacant period
service to the number of vehicles in full day service is 0.9;
the duration of the non-vacancy period is 16 hours; hence, it
is possible for vehicles to recharge their batteries in minutes
assuming that the average service time of the charger is 15
minutes.

The maximum and minimum chargers in the charging
station are Nmax and Nmin respectively; the minimum distance
between charging stations is 0.5km; and users can drive up to
2km to recharge their batteries.

5.3 Example Solution

Based on the improved evolutionary algorithms, the example
solution is as follows:
(1) Optimize parameter settings

After the parameter analysis, the operating parameters
of the algorithm are determined as follows: the maximum
number of iterations is 150, the internal and external
population sizes are 200 and 20 respectively, the crossover
probability is 0.6, and the mutation probability is 0.08.
(2) Analysis of the optimization results
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Table 3 Indicators of the calculation example.

Independent operation 1 2 3 4 5 6 7 8 9 10
Indicator M 5.867 4.814 10.238 0.456 1.928 7.246 15.459 7.762 19.577 2.054
Independent operation 11 12 13 14 15 16 17 18 19 20
Indicator M 12.057 0.046 0.356 17.758 6.647 13.145 10.258 10.689 7.856 0.086

Table 4 Comparison table of optimization results.

Projects Scheme 1 Scheme 2 Scheme 3 Scheme 4
Site and corresponding size (serial number
of agent construction station and corre-
sponding number of charging machines)

[4,4] [4,3] [4,2] [1,4]

[5,2] [5,3] [5,3] [2,4]
[5,3] [5,4] [5,3] [6,3]
[7,4] [7,3] [7,3] [9,4]

[13,3] [13,2] [13,2] [10,3]
[15,3] [15,2] [15,2] [11,10]
[16,4] [16,3] [16,3] [12,4]
[20,3] [20,2] [20,4] [17,3]

1.Economic index 1442.99587 1442.19028 1415.13284 2030.38954
2.The average utilization index of the
charger

1.00028 1.00182 1.56954 9.85641

3. .User’s charging convenience index 1.52589 1.52911 2.39674

The example was run independently for 20 times and all
the optimization results were statistically analyzed to obtain
the complete front of the example. Then the example was run
again 20 times independently, and the distance index between
the non-cracking front and the complete front solution after
each run was calculated. The range of the index is below
20, that is, the average distance between the non-cracking
solution set and the real optimal solution set obtained by
each independent operation is below 20. Compared with the
optimized results, the relative proportion is very small, that
is, the non-inferior solutions obtained by each simulation are
close to the real frontier and are relatively stable. This shows
that the parameter settings of the design and algorithm are
reasonable and the independent simulation can give a more
stable optimization solution. Indicators of the calculation
example are shown in Table 3:

The number of frontiers in this paper is 20, so there are 20
multi-objective and dual-objective optimization schemes for
the location and capacity of charging stations. A comparison
table of the optimization results of four of the schemes is
shown in Table 4:

It can be seen from Table 4 that the dual-objective
optimization scheme 1 obtains good results on both index 1
and index 2, but ignores the effect of index 3. In practice,
the index is an important factor in the growing popularity of
electric vehicles. Therefore, it is of practical significance to
take the user’s charging convenience as the third index. Multi-
objective optimization scheme 2 is a compromise solution
in three indicators, that is, economy, users and resource
utilization (the average utilization rate of the charger) all reach
an equilibrium state; scheme 3 can achieve good results in
the index, but at the cost of index 2; scheme 4 achieves the
best results on metric 2 but sacrifices metric 1 and metric
3 to achieve this. The decision maker can choose the final
compromise solution or the optimal solution from the obtained

non-cracking according to the overall strategy of the charging
station (the preference of the decision maker is whether the
economy is the priority or the utilization rate of the charging
machine or the charging convenience of the user).

Improved evolutionary algorithms are a very effective
method in multi-objective decision analysis. The basic
processing idea is as follows: first, determine the initial
decision matrix, then normalize the initial matrix, and find
the optimal and worst scheme from the priority schemes.
Then, the distance between each evaluation object and the
optimal scheme and the worst plan is calculated respectively
to obtain the relative proximity of each evaluation scheme.
After sorting, the pros and cons of the scheme are evaluated
based on this.

6. CONCLUSION

In recent years, countries around the world have developed
electric vehicles as an important strategy for national energy
security and transformation to a low carbon economy. With
the maturity of electric vehicle technology, China is about to
enter a period of vigorous development of electric vehicles.
Charging facility planning is a key factor affecting the
development of electric vehicles, which is related to whether
the charging network can be formed. Therefore, it is of
theoretical and practical significance to study the layout of
charging facilities. By comprehensively considering the
various influencing factors of charging stations, a multi-
objective planning model for electric vehicle charging stations
was established by constructing three indicators, namely
economy, average utilization rate of charging stations and user
charging convenience, to achieve a balance between the three
indicators. This improves the scientific nature of the planning
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scheme and the efficiency of the planning, and makes the
location and capacity of the charging station more reasonable.
The improved evolutionary algorithm method is designed to
solve the model.
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