Eng Int Syst (2022) 4: 293-298
© 2022 CRL Publishing Ltd

Engineering
Intelligent Systems

Deep Learning for Central Air
Conditioning Controller

Dongsheng Xu*

Zhengzhou Preschool Education College, ZhengZhou, HeNan

In current commercial buildings, the most used is central air conditioning, and it is found through the survey that the energy consumption is relatively
high after using central air conditioning, so this paper uses a deep learning algorithm to solve the energy consumption problem. The approach used
in this paper is to develop a low-cost central air conditioning controller using neural networks, and experimental simulations show that this algorithm
we propose has high energy efficiency and also reduces the cost of central air conditioning.Keywords: central air conditioning controller, algorithm,

temperature.

1. INTRODUCTION

Heating, ventilation and air conditioning (HVAC) systems
are widely deployed and quickly expanding, providing a
comfortable indoor environment for commercial buildings.
According to the report in [1], the energy costs of buildings,
namely HVAC and lighting, account for over 40% of the
total energy consumption in the United States, with , HVAC
systems consuming the majority of total energy. Therefore,
how to improve HVAC controllers to deliver energy savings
is a research topic of great interest.

An intelligent and reliable controller plays an essential
role in the automation of HVAC control. The existing
HVAC functions of commercial buildings include physical
condition sensing and intelligent control. Due the advances
in sensors and other facilities, the environment sensing
module of HVAC systems is sophisticated however, many
researchers have made efforts to develop more efficient control
strategies for HVAC systems. In [2], the authors design an
occupancy-predictive model-based HVAC control algorithm
and implement it in a low-cost embedded system, achieving
significant energy savings.

A conventional HVAC control relies on rule-based control
strategies. This involves complex human-crafted rules and
tuning processes, which is unrealistic for real-world imple-
mentation. To address this problem, a deep reinforcement

*Corresponding Author Email: 5695232@qg.com

vol 30 no 4 July 2022

learning-based control scheme is proposed in [3]. The agent
is able to intelligently learn an effective strategy for operating
HVAC systems, which saves more energy costs compared to
conventional rule-based methods. But the unknown thermal
dynamics of an indoor building is challenging. The authors
in [4] present a multi-agent deep reinforcement learning
approach that incorporates the attention mechanism, which
does not need any prior information. The work in [5]
exploits video images to realize thermal comfort inferences
and improve the quality of HVAC control.

Although yielding significant improvements, the existing
works mostly require a large amount of computing resources
to perform the control algorithms, which is not realistic
for embedded devices and real implementation. In this
paper, we address these problems by utilizing state-of-the-art
deep learning algorithms. The contributions are as follows.
First, we propose an energy-efficient controller for HVAC
systems based on deep reinforcement learning algorithms and
improvement schemes. To reduce the implementation cost
of the pro- posed design, we utilize neural network pruning
techniques to develop a low-complexity HVAC controller.
Finally, we provide the experiment results to verify the
effectiveness of the proposed algorithms with applications to
HVAC control.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the proposed adaptive controller for HVAC
based on deep reinforcement learning. The evaluation and

293

DEEP LEARNING FOR CENTRAL AIR CONDITIONING CONTROLLER

Controller

State Reward

Action

HVAC

Environment

-~

Figure 1 Basic control flow of a HVAC system in a commercial building.

experiments are presented in Section 3. Finally, Section 4
concludes the paper.

2. PROPOSED ADAPTIVE CONTROL
SCHEME FOR BUILDING A
HVAC SYSTEM

2.1 Overall Control and Design Flow

The HVAC control system inside a building is used to maintain
the desired temperature conditions for each building area. The
temperature is adjusted based on the current room conditions
and the outside environment, such as indoor temperatures and
outdoor weather, ensuring a comfortable indoor environment
for the occupants. As shown in the analysis in Section 2.2, the
HVAC control operation can be treated as a Markov decision
process. We formulate the HVAC control process as shown in
Figure 1, which illustrates the basic control flow of a HVAC
system in a commercial building.

In the case of HVAC control, the controller is regarded as an
agent that interacts with a commercial building environment.
The controller sends a signal to the HVAC system to produce
different levels of air flow. The environment arrives at various
states after actions have been performed on the HVAC system.
As the actions are taken and the HVAC system generates
different effects on the environment, the agent may receive
various rewards and state information.

To develop efficient and reliable HVAC controllers, we
propose a novel adaptive controller by taking advantage
of deep reinforcement learning, optimizations for neural
networks, and building simulation techniques. The proposed
HVAC control design is a good tradeoff between control
accuracy and implementation overhead. Furthermore, due to
the adoption of network optimization strategies, the proposed
control algorithm can be realized with very low algorithm
complexity in an automated manner.

To reach the goal of the precise control of building
temperatures, control algorithms should be intelligent and
have some degree of adaptiveness to automatically adjust the
temperature without a large amount of human intervention.

294

This imposes strict requirements on the core algorithms
of control systems. Hence, we exploit state-of-the-art
deep reinforcement learning algorithms to realize accurate
temperature control and ensure the comfort of the occupants
of commercial buildings.

When implementing the HVAC control algorithm, two
major factors need to be taken into consideration, namely
low algorithm complexity and low response latency, since
deep neural networks are computation-dominant [9]. We
utilize the existing optimization schemes to prune the neural
network models of deep reinforcement learning, thereby
reducing the inherent computation complexity as well as the
implementation overhead.

Figure 2 illustrates our proposed intelligent HVAC con-
troller for commercial buildings based on deep reinforcement
learning algorithms. The diagram involves two phases: the
training phase and the inference phase. For the training phase
of the proposed algorithm, we use an advanced simulation
tool to emulate the thermal dynamics of a specific building
due to the limited amount of real data and the training cost.
After the training phase has converged, the trained model
is optimized via a network pruning algorithm to reduce the
computation complexity. Finally, we implement the trained
control algorithm and send a control signal to the HVAC
system. The experiment results are discussed.

2.2 HVAC Control with Deep
Reinforcement Learning

To simplify the controller algorithm design, we consider a
HVAC system that produces conditioned air which typically
flows at a constant temperature. In this case, the air flow rate
can be switched between multiple levels. The HVAC control
task for a commercial building can be regarded as the problem
of searching for the optimal control sequence for the HVAC
system. However, the complex building environment makes
it difficult to accurately develop optimal control algorithms
that incur a minimum energy cost while maintaining a high
comfort level. To solve this problem, similar to [3], we
leverage the deep Q-learning algorithms [6] and propose
optimization tricks for the application of HVAC control.

Engineering Intelligent Systems

Simulation Model
(Training)

Environment

Real Building
Environment
(Inference)

L

it

Experience Replay Buffer

Transition #1

Transition #i

Double Q-network

Training + Optimization

Network Pruning

/1_I'\ .
4 A Mini-batch SGD

Figure 2 Proposed deep reinforcement learning-based HVAC controller.

Considering the real realizability of simulation, we dis-
cretize the control signal of a HVAC system using an infinite
resolution of air flow rate. This is because the control
algorithm is unable to accept and process sensor data with very
high resolution, not only hindering the training convergence
but also increasing the difficulty of developing a real-world
system. Therefore, we assume that the discrete air flow rate is
uniformly distributed between the minimum flow rate f;, and
the maximum flow rate fmax. As a result, the control signal
(or action sequence) is expressed as A={aj, ..., a;} from time
step 1 to time step ¢. Itis clear that the dimension of the action
space will grow exponentially as the time steps and air flow
rate levels increase.

The temperature of the next time step after tuning at is
determined by the current building states, indoor or outdoor
environment conditions, and the control signals of the HVAC
system. It is independent from the previous states of the
building [3]. Hence, HVAC control algorithms can be
regarded as a Markov decision process (MDP). The large
search space for the action sequence is significantly reduced
under the assumption of MDP.

The reward function guides the agent to take actions and
make decisions. Therefore, the reward design plays an
important role in deep reinforcement learning. It determines
the performance and intelligence level of the trained control
algorithms. Based on the state and reward feedback of
the environment, the reward should be carefully designed
to reflect the goal of the constructed model. As previously
mentioned, the goal of the HVAC controller is to maintain the
temperature of a building at a comfortable level and minimize
the energy consumption over a period of time. We integrate
these two targets into a single reward function. The reward
function at time ¢ is given as follows:

vol 30 no 4 July 2022

ry = — <€n€VgJ’(at—l, Si—1)

k
+ A Y (T = Tin| + 1T} — Tmaxn), (1)

i=1

where the reward function consists of two parts, including
the energy consumption term of HVAC and the metric that
evaluates the comfort level of the indoor environment. The
obtained reward from the environment is determined by
the current state of the indoor environment as well as the
energy consumption of the previous time step. The comfort
level is evaluated based on the difference between the actual
temperature and desired comfortable temperature. The reward
is negative because the goal is to minimize the energy
consumption and ensure minimum temperature fluctuations.
The agent achieves the optimal reward function by balancing
these two aspects.

Eq. (1) gives the reward for each time step. However,
the proposed control algorithms will try to maximize the total
reward over a given period of time. The reward for a single
time step becomes the cumulative reward. The goal of the
agent is to maximize the total reward between the first state
and the final state as follows:

n
Rioar =) v'ri,)

t=1

where Ry, denotes the summation of the reward from the
beginning to the end of the action sequence. y € [0, 1]
represents the discount factor which measures the contribution
of rewards from short term and long term. For instance, y = 1
means that the agent treats the rewards from different time

295

steps equally. A smaller y reduces the importance of the
reward obtained from previous time steps.

According to [7], the state from the environment and action
space is huge thus it is not realistic to store all of them into the
Q table of traditional reinforcement learning. To alleviate this
problem, a deep neural network is used to estimate the Q-value
function in the emerging deep Q-learning algorithms. On the
basis of the Bellman equation, the Q-value update is given by:

O(st,ar) < O(st,ar) + o[Ry
+ y maax Q(sf-‘rl’ a) - Q(S[7 al)]a

where o denotes the learning rate, Q(s;, a;) represents the
Q-value function corresponding to the current time, and
O(s;+1, a) represents the Q-value associated with the next
time step after taking action a.

The weights of the neural network defined as w are
randomly initialized. The weights of the neural networks are
iteratively updated using the mini-batch stochastic gradient
descent (SGD) method. More specifically, the training of
neural networks weights w is done by updating the weights
with the gradient of the loss function:

Wi+l = Wk — o - E[Rep1 +y max Q(si+1, a; wy)
— O, ar; wi)] X Vi, O(sz, ar; wy),

where the target network weights at k-th iteration is defined as
w;, , which are fixed during training and are only updated with
the Q-network weights wy every C training iterations. The
used loss function is the mean squared error (MSE) between
the output of the neural network and the target Q-value.

According to the analysis in [7], the weight updating in
Eq. [4] for the target network and Q-network will lead to
overestimating the values of actions. This is because the
same network is used to calculate both the predicted value
and the target value, resulting in divergence between the
calculated results. The phenomenon of overestimation may
hinder the control algorithms from choosing the optimal action
in many states, thus reducing the overall performance of the
algorithms. This problem can be resolved by using a different
deep Q-network and target network [7]. In this case, the plain
Q-value function is as follows:

O(ss, ar) < O(se,ar) + a[Rip1 + v O (5141, @)
— QC(ss, ar)l,

where functions Q’(-) and @ = max, Q(s;+1, a) are used to
estimate the expected Q-value using the selected action a that
maximizes the value of the predicted Q-value network.
According to the analysis in [6], the agent training process
may experience some unstable circumstances if we only run
the deep Q-learning algorithms on the state-action pairs as
they occur during simulation. To equip the agent with some
capabilities of memory, we introduce the experience replay
buffer to store the transition of discovered data and occurred
experience. The experience replay is used to reduce the
correlation of observed samples, increasing the robustness of
the training process. As shown in Figure 2, the experience
replay buffer stores the agent’s experiences, including the
actions taken, states, and rewards over certain time steps.

296

DEEP LEARNING FOR CENTRAL AIR CONDITIONING CONTROLLER

Exploration and exploitation are the two critical concepts in
reinforcement learning. Exploration makes an agent improve
the current knowledge about each action while exploitation
selects the most rewarded action by exploiting current action-
value estimations. To balance exploration and exploitation,
e-greedy policy is investigated to randomly choose between
exploration and exploitation. It can be expressed by the
following equation:

max Q(s, a), with probability 1 — ¢,
ar = a
random action, with probability e,

where the agent tends to select the action that maximizes the
current Q-value with probability 1 — €. In contrast, the agent
selects a random action with probability €. In other words,
the e-greedy policy will allow the agent to exploit most of
the time. The agent only has a small chance to explore new
experiences.

2.3 Pruning of Neural Networks

The existing deep neural network models usually require a
large amount of computing resources and memory, which
becomes a bottleneck when running low-latency models on
embedded devices. The training and inference of fully
connected networks is computation-intensive and memory-
intensive, requiring significant data movement and computa-
tion. Hence, embedded devices with limited computing power
have difficulty handling real-time inference tasks. Energy
efficiency is another major issue when implementing current
deep neural network models.

These limitations not only increase the implementation
costs but also hinder the deployment of the proposed
models in resource-constrained environments. One of the
methods to address these challenges is neural network pruning
techniques [8,9], which are used to reduce the size of network
models by removing redundant connections between fully
connected layers. There are various types of network pruning
algorithms to optimize neural network structures. The deep
compression in [8,10] is one of the promising methods to
obtain sparse neural network architectures. The basic idea of
deep compression is progressively finding and removing the
redundant weights that have relatively small magnitudes.

Figure 3 depicts the neuron connections of original and
pruned fully connected layers. The original layer connection
is dense and requires an excessive number of weights.
Network pruning searches for the most representative and
important connections for each layer. Then the trivial
connections are removed by setting the weights to zero,
thereby effectively cutting the weights and reducing model
size as well as computational complexity. After applying
the optimizations, the inference of neural networks can be
accelerated by several times without loss of performance.
The model size will shrink dramatically as a large number
of weights are pruned.

However, the metric to prune the networks in deep
compression is simple, thus it is difficult to guarantee the
model’s performance suffers minimal loss. In this work, we
adopt another pruning technique ThiNet [11] which prunes the

Engineering Intelligent Systems

Dense
Network

Sparse
Network

Figure 3 Illustration of original deep neural network (left) and its pruned variant (right).

27 T T T

Indoor Temperature / °C
na [\+] [} na [}
na [55] o w (=1}

n
-

T T T

——Basaeline
- - =Proposed DRL-based

20
0:00 2:00 4:00 6:00

8:00 10:00 12:00 14:00 16:00

Figure 4 Results of indoor temperature under different HVAC control algorithms from 0: 00 to 16: 00.

model using an analytical metric. To minimize performance
degradation and prune as many weights as possible, the
authors in [11] use the following reconstruction error:

m
P . A T a2
b = argmin) (5 — w57,
i=1
where %/ are the randomly selected samples that are used to
evaluate the construction error. Eq. (7) can be understood as a

classic linear regression problem. Thus, it has the close-form
solution & = (XTX)~1xTy.

3. EXPERIMENTS

In this section, we discuss in detail the experiments to verify
the performance of the proposed adaptive control scheme for
the HVAC system. A comparison with its counterparts and an
analysis are also presented.

3.1 Simulation Setup

We implement the proposed deep reinforcement learn-
ing algorithms on the advanced deep learning framework
PyTorch. GPU is used to accelerate the training and inference
process. Similar to the simulation flow in [3], the thermal
dynamics of indoor environments are emulated using the

vol 30 no 4 July 2022

simulation tool EnergyPlus. The comfortable temperature
range is set as Tmin = 20 and Trmax = 26. The target network
and deep Q-network both adopt a five-layer basic structure,
where there are 64,128,256,192,96 neurons for each hidden
layer.

The input of the trained controller is the concatenation of the
outdoor temperature vector, the indoor temperature vector and
the current state of the HVAC system. The hyperparameters
of training and network structures are given as follows. To
achieve a smooth convergence process, the mini-batch size
is selected as 16 to make the weight updating stable. As
suggested by [6], the e-greedy policy will choose a random
action with a probability of 0.1. We assign a small experience
replay memory size as 50. The weights of the target network
are copied every 6 training iterations. The discount factor of
the cumulative reward calculation is set to 0.97. The Adam
optimizer [12] is used to yield faster training.

3.2 Experiment Results

Figure 4 illustrates the indoor temperature curve using
different HVAC control algorithms. The baseline is the
reinforcement learning-based HVAC controller in [3]. A
commercial building in Nanjing, China is selected as the
indoor environment. The training is carried out on the
simulation tool and we perform tests on the real building. It

297

DEEP LEARNING FOR CENTRAL AIR CONDITIONING CONTROLLER

60% E —
50%F = = A
400/0 B

30% [

Energy Saving

20%

1 00/0 i

{+)

FJ% 10% 20% 30% 40% 50% 60% 70% 80%

Weights Pruning %

Figure 5 Relationship between the energy saving rate and weight pruning percentage.

can be seen from the figure that the indoor temperature under
the control of the proposed algorithms is smoother and there is
less temperature fluctuation in comparison with the baseline
control algorithms. This demonstrates that our proposed algo-
rithms are more effective in the application of HVAC control.

We use the adopted pruning techniques in [11]. The
relationship between the energy saving rate and weight
pruning percentage is shown in Figure 5. We do not used
the average training reward to evaluate the performance of
network pruning since it is difficult for the average reward to
reflect the final effects of network pruning. Hence, we use
the more realistic metric, energy saving which is defined by
the percentage of energy saving using the proposed pruned
control algorithms over the baseline algorithms shown in
Figure 4. From the figure, we can see that the unpruned
network model delivers over 50% energy savings compared to
the baseline model. After setting a different pruning threshold,
the degraded network performance causes a decline in the
energy saving rate. But the energy saving rate declines slowly.
The figure provides a guideline for us to decide which network
structures to use in different scenarios.

4. CONCLUSION

In this paper, we propose an efficient and effective controller
for HVAC systems based on deep reinforcement learning
algorithms. We transform the HVAC control problem into a
reinforcement learning format. Then, we utilize the advanced
optimization methods for deep neural networks to develop a
low-cost HVAC controller. The experiment results verify the
effectiveness of the proposed algorithms with an application
for HVAC control.

REFERENCES

1. L.Pérez-Lombard, J. Ortiz, and C. Pout, “A review on buildings
energy consumption information,” Energy and buildings, vol.
40, no. 3, pp. 394-398, 2008.

298

2.

10.

11.

12.

13.

M. Aftab, C. Chen, C.-K. Chau, and T. Rahwan, “Auto-
matic HVAC control with realtime occupancy recognition
and simulation-guided model predictive control in low-cost
embedded system,” Energy and Buildings, vol. 154, pp. 141-
156, 2017.

. T. Wei, Y. Wang, and Q. Zhu, “Deep reinforcement learning

for building HVAC control,” in Proceedings of the 54th Annual
Design Automation Conference, 2017, pp. 1-6.

. L. Yu, Y. Sun, Z. Xu, C. Shen, D. Yue, T. Jiang, and X. Guan,

“Multi-agent deep reinforcement learning for HVAC control
in commercial buildings,” IEEE Transactions on Smart Grid,
2020.

. F. Jazizadeh and W. Jung, “Personalized thermal comfort

inference using RGB video images for distributed HVAC
control,” Applied Energy, vol. 220, pp. 829-841, 2018.

. V.Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G.

Bellemare, A. Graves,

. M. Riedmiller, A.K. Fidjeland, G. Ostrovski et al., “Human-

level control through deep reinforcement learning,” Nature, vol.
518, no. 7540, pp. 529-533, 2015.

. H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement

learning with double g-learning,” in AAAI Conference on
Artificial Intelligence, 2016.

. S. Han, H. Mao, and W.J. Dally, “Deep compression: Com-

pressing deep neural networks with pruning, trained quantiza-
tion and huffman coding,” arXiv preprint arXiv:1510.00149,
2015.

D. Blalock, J.J.G. Ortiz, J. Frankle, and J. Guttag, “What
is the state of neural network pruning?” arXiv preprint
arXiv:2003.03033, 2020.

S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” in Advances in
neural information processing systems, 2015, pp. 1135-1143.
J.-H. Luo, H. Zhang, H.-Y. Zhou, C.-W. Xie, J. Wu, and W.
Lin, “ThiNet: pruning CNN filters for a thinner net,” /IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
41, no. 10, pp. 2525-2538, 2018.

D.P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

Engineering Intelligent Systems

