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When the traditional algorithm is applied to detect a target in aerial images during power grid inspection, it is difficult to carry out optical correction
due to the great influence of the noise of aerial images. In the target coincidence rate range of 29.56%–49.56% of aerial images, there is the problem
of high recall rate. Therefore, this paper proposes a target detection algorithm for aerial images in power grid inspection based on transfer learning.
First of all, the aerial images are preprocessed, which involves optical correction, image restoration, geometric correction and so on. Then the SIFT
algorithm based on the Gaussian scale space theory is used to extract the target feature points of the aerial images. The main implementation process
involves: establishing the boundaries of the scale space, the feature point location, the feature point orientation, and the feature point descriptor
generation. Based on the transfer learning algorithm, the detection of targets in aerial images in power grid inspection is realized, and the target
detection algorithm is completed. In order to prove that the algorithm has a low recall rate in the range of 29.56%–49.56% of the target coincidence
rate of the aerial images in power grid inspection, compared with the original algorithm, the experimental results show that the recall rate of the
algorithm is always lower than that of the other two algorithms, and the performance is better.
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1. INTRODUCTION

The target detection algorithm of the aerial images in power
grid inspection can identify and locate the insulator, bird’s
nest and other targets on the tower. The power system is the
lifeblood of the country; hence, the transmission line is an
essential part of this system, and the normal and efficient
operation of the transmission line is an important guarantee
for the stable development of the national economy. With
the development of electric power systems in China, the
distance between transmission lines is increasing, and the
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transmission lines are being installed further away from the
city and the main roads. Generally, traditional inspection and
maintenance of transmission lines is done manually, with the
main detection method being the naked eye or binoculars for
observation. When the problem cannot be detected in this
way, it is necessary to climb the tower to check lines one
by one, which is time consuming and inadequate given the
current domestic and industrial needs (Zhang et al., 2018;
Gian et al., 2019). With the development of power technology,
optical technology, aviation technology and image processing
technology, the use of aerial images for line inspection has
become the future development direction. Using helicopter
and UAV to inspect the transmission line has the advantages of
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reliability, rapidity, low cost and not limited to the surrounding
environment. By storing, processing and analyzing the
inspection images, a lot of information about the operation
of transmission lines can be obtained. The information can
give a comprehensive understanding of the condition of
transmission lines and provides data for the inspection of the
transmission line. At present, the inspection of transmission
lines based on aerial photos mainly uses manual methods
to detect any problems. Due to the uncertainty of visual
observation, it is easy to miss and misjudge the line defects
(Hou et al., 2018). In addition, the amount of data collected
by aerial photography is very large, and its inspection
requires a lot of manpower and material resources. Hence,
a target detection algorithm for aerial images in power grid
inspection is emerging at an appropriate time (Dániello
et al., 2018).

For the target detection algorithm of aerial images in
power grid inspection, some preliminary research results have
been obtained by researchers at home and abroad. Foreign
scholars have proposed a target detection algorithm which
uses a ratio operator to extract the pixel points of aerial
images, a subsection Radon transform to extract and connect
each section of the transmission line, and then a Kalman
filter technology to track the broken part of the connected
transmission line, in order to remove the damaged line
. Finally, the ratio operator is used to detect the target
on the transmission line (Wang et al., 2018; Chowdhary
and Kumar, 2019). However, the research on the detection
algorithm of the aerial images in power grid inspection is still
in its infancy in our country. Image processing technology
for aerial images in power grid inspection does not have
a long application history, the research results are few and
mainly relate to the stability of image acquisition and the
improvement of image quality, and there is still little research
on the detection of targets in the aerial images in power
grid inspection. However, some scholars have put forward
some constructive opinions and methods. Some scholars
have put forward a target detection algorithm based on
genetic algorithm. Firstly, neural network is used to filter
out the background noise of aerial images in power grid
inspection, then the image is segmented by the method of
maximum entropy threshold in genetic algorithm, and finally
the aerial images in power grid inspection is segmented by
the method of connected region (Nagaraj et al., 2018). These
methods preliminarily solve the problem of target detection
of aerial images in power grid inspection. However, in the
process of using the above algorithm to detect the target
of aerial images in power grid inspection, it is unable
to carry out optical correction due to the great influence
of aerial image noises in power grid inspection. In the
range of 29.56%–49.56% of target coincidence rate of aerial
images in power grid inspection, there is a high recall rate
problem. Therefore, a target detection algorithm of aerial
images in power grid inspection based on transfer learning
is proposed.

2. DESIGN OF TARGET DETECTION
ALGORITHM OF AERIAL IMAGES
IN POWER GRID INSPECTION BASED
ON TRANSFER LEARNING

2.1 Image Preprocessing

First of all, the inspection image of power aerial photography
is preprocessed, which includes optical correction, image
restoration, geometric correction and so on. The purpose of
image restoration is to remove the noise and motion blur in the
aerial images in power grid inspection, and highlight the useful
information in the image. The purpose of optical correction
is to solve the exposure and focus problems when taking
aerial photographs and improve the image contrast. The
geometric correction (distortion restoration) process corrects
the geometric deformation of the aerial image, and carries out
several operations on the image (Luo et al., 2018).

2.1.1 Optical Correction of Aerial Images
in Power Grid Inspection

The optical correction of aerial images in power grid
inspection needs nonlinear transformation first, and then
histogram equalization (He et al., 2018).

If f is the gray level of the image and L is the incident light
intensity of the CCD image sensor, the relationship between
the input light intensity and the gray level of the image can be
expressed as follows:

f = cLγ (1)

In Equation (1), c represents constant; γ represents input light
intensity.

According to Equation (1), the gray level of the image has
a nonlinear relationship with the input light intensity. In order
to correct this and make it linear, it must be transformed.

g = kL

(
f

c

) 1
γ

(2)

In Equation (2), g, represents the gray level of the transformed
image; k, represents the constant, usually 1.

In Equation (2), different values of γ have different effects
after transformation. When γ < 1, the brighter the input
value, the stronger is the output value; that is, the image
becomes brighter. When γ > 1, the brighter the input value,
the weaker is the output value; that is, the image becomes
darker. When γ = 1, it is expressed as linear transformation,
and the image brightness remains unchanged. Therefore,
the value of γ is directly related to the effect of image
transformation (Maria, 2018; Gao and Gu, 2018). The value
of γ is selected by the gray level feature of the image.

Set a gray-scale image with a resolution of m × n, g, is its
average gray-scale feature, and its calculation equation is as
follows:
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Table 1 Corresponding relationship between average gray g and γ value.

No. Average Gray g γ value

1 200–210 1.6
2 190–200 1.4
3 180–190 1.2
4 170–180 1
5 150–170 0.8
6 130–150 0.7
7 110–130 0.6
8 90–110 0.5

Figure 1 Degradation model.

g = 1

m × n

n∑
i=1

m∑
j=1

f (i, j) (3)

In Equation (3), f (i, j) represents the gray value on point
(i, j).

Using the average gray g to represent the gray characteris-
tics of the gray image, the corresponding relationship between
the average gray g and the γ value is shown in Table 1. The
value of γ is selected according to Table 1 (Lou et al., 2018).

Then, through histogram equalization, the uneven his-
togram distribution of aerial images in power grid inspection
is transformed so that it has uniform distribution, and the
dynamic range of gray value is increased to enhance the overall
contrast of the image. Firstly, the following method is used to
process the aerial images:

g(i, j) = T [ f (i, j)] (4)

In Equation (3), g(i, j) represents the image after en-
hancement processing; T represents the image enhancement
transformation function, that is, an operation on the original
image, which is defined in the neighborhood of (i, j).

If s and t represent the gray value of the original image and
the image after enhancement on point (i, j) respectively, the
processing can be expressed as follows:

t = T (s) (5)

At this time, the image enhancement transform function T
needs to meet two conditions:

1) T (s) is a single valued single increasing function in the
range of 0 ≤ s ≤ L − 1;

2) For 0 ≤ s ≤ L − 1, there is 0 ≤ T (s) ≤ L − 1.

Condition 1) ensures the existence of inverse transformation,
and the sequence of gray levels of the source image remains
from small to large after transformation, so as to prevent the
reversed gray level of the transformed image. Condition 2)
ensures the consistency of the dynamic range of gray levels

before and after transformation. In histogram equalization,
the cumulative distribution function needs to meet these two
conditions, and can convert the distribution of s into the
uniform distribution of t (Pavela, 2018). At this time, the
cumulative distribution function CDF of s is the cumulative
histogram of the original image. In this case, the equation is:

tk = T (sk) (6)

In Equation (6),k represents the gray level of the digital image.
At this time, the value of tk is within [0, 1], and it needs to

be extended to [0, L − 1] and integer.
Then the equation for calculating the gray level of the output

image is:
yk = int[(L − 1)tk + 0.5] (7)

In Equation (7), yk represents the gray level of the output
image.

2.1.2 Restoration of Aerial Images
in Power Grid Inspection

Image restoration is done by processing the degraded image
and restoring the original image as much as possible. The
key to restoring aerial images in power grid inspection is
to establish the degradation model of the aerial images.
Because there are many reasons for image degradation, only
an approximate model can be built to describe the degradation
of the image (Jonsson, 2018).
Assuming that the real image on the object plane is represented
by f (x, y), and the influence of external additive noise n(x, y)

is introduced into an imaging system H at the same time,
the actual degraded image g(x, y) can be described by the
degradation model, as shown in Figure 1.

Expressed mathematically, the input and output in Figure 1
have the following forms:

g(x, y) = H [ f (x, y)] + n(x, y) (8)

In Equation (8), H [·] represents the transformation function
considering all degradation factors. It has the following
properties: homogeneity, superposition, linearity and space
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invariance. It can be used as a linear operator (Jiang et al.,
2018).

According to the linear system theory, there are:

H [ f (x, y)] = H [ f (x, y) ∗ δ(x, y)]

= f (x, y) ∗ H [δ(x, y)]

= f (x, y) ∗ h(x, y) (9)

In Equation (9), δ(x, y) is the unit impulse signal; h(x, y) is
the transformation function of the unit impulse signal.

Without considering the additive noise, the response of the
degradation model is as follows:

g(x, y) = H [ f (x, y)] = f (x, y) ∗ h(x, y)

=
∫∫
R2

f (α, β)h(x − α, y − β)dαdβ (10)

In Equation (10), R represents degradation threshold; α and
β represent linear response value and linear degradation value
respectively; d represents response threshold.

Because H [ · ] is space invariant, the response of the model
to the displacement signal f (x − x0, y − y0) is:

f (x − x0, y − y0) ∗ h(x, y) = g(x − x0, y − y0) (11)

In Equation (11), g(x − x0, y − y0) represents degraded
signal.

In the case of additive noise, the above degradation model
can be expressed as:

g(x, y) = f (x, y) ∗ h(x, y) + n(x, y) (12)

Through the degradation model of the aerial images in
power grid inspection, the degraded image of the aerial images
in power grid inspection is processed, and the original source
image is restored (Hou et al., 2018).

2.1.3 Geometric Correction of Aerial Images in
Power Grid Inspection

The geometric correction algorithm based on the iterative
method and self-checking polynomial compensation error is
used to carry out the geometric correction of aerial images in
power grid inspection. This involves the following steps:

In the first step, according to the ephemeris attitude data
provided by the satellite system, Lagrange function and linear
function are used to fit the external azimuth elements to obtain
the initial value G0; Then, based on the set of control points,
G0 is adjusted to obtain the external azimuth element G, and
the strong correlation between the external azimuth elements
is overcome by using the generalized ridge estimation method
(Liu et al., 2018).
In the second step, the exterior orientation elements of
each scanned line are accurately obtained by the cyclic
iteration method, and then the image plane coordinates of the
ground points are obtained according to the collinear equation
model, which is the initial coordinate estimation of geometric
correction processing.
The third step is to check the discrepancy between the
estimated value of image plane coordinate and the real value at

the control point, construct the self-checking polynomial with
the estimation deviation and carry out the least square fitting.
Using the above fitting coefficient, the error compensation
of the initial coordinate estimated value obtained in step 2 is
realized to traverse each point in the image and carry out the
gray-scale interpolation.

2.2 Extraction of Target Feature Point

The SIFT algorithm based on the Gaussian scale space theory
is used to extract the target feature points of the aerial images
in power grid inspection. The main implementation process
involves obtaining the extreme value of the scale space,
the feature point location, the feature point orientation, and
generating the feature point descriptor.

2.2.1 Extreme Value of Scale Space

In order to give the detected feature points scale attributes, it
is necessary to establish the scale space of the aerial image in
the power grid inspection (Zou et al., 2018). The scale space
L(x, y, σ ) of image I (x, y) is obtained by convolution of a
series of Gaussian check images:

L(x, y, σ ) = G(x, y, σ ) ∗ I (x, y) (13)

In Equation (13), G(x, y, σ ) represents Gaussian kernel
function and σ represents the standard deviation of the
Gaussian smoothing filter.

In order to effectively detect the stable feature points in
the scale space, the Gaussian difference function DOG of the
image is constructed as the approximation of the normalized
Gaussian Laplace function σ 2∇2G, which can be calculated
by the following equation:

D(x, y, σ ) = (G(x, y, kσI ) − G(x, y, σI )) ∗ I (x, y)

= L(x, y, kσI ) − L(x, y, σI ) (14)

In Equation (14), D(x, y, σ ) represents the Gaussian
difference function of image; k represents the scale ratio
between adjacent scale images; σI represents the standard
deviation of Gaussian smoothing filter of image I (Milliat
and Agnès, 2018).
Because the local extremum of Gauss difference function is
scale invariant, the scale invariant characteristic point X of its
scale space can be defined as:

X = (x, y, σ )T = extrema{D(x, y, σ )} (15)

In Equation (15), T represents the scale threshold; extrema
represents the local extreme point in the 3×3×3 neighborhood
of the function DOG, as shown in Figure 2.

2.2.2 Feature Point Location

Because the DOG operator is sensitive to noise and edge, it is
necessary to further test the candidate feature points to locate
them accurately. The exact location and scale of the feature
points are determined by the following operations, and the
low contrast (sensitive to noise) and unstable edge response
points are removed.
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Figure 2 Local extremum in 3 × 3 × 3 neighborhood of function DOG.

Taylor quadratic expansion of Gauss difference function is
carried out at the extreme value:

D(X) = D + ∂ DT

∂ X
�X + 1

2
�X T ∂2 D

∂ X2 �X (16)

In Equation (16), D(X) represents the Taylor quadratic
expansion result at the extreme value of Gauss difference
function; D represents the threshold value of DOG operator;
�X represents the offset of sample point (Sophie, 2018).

Since X is the extreme point of Gauss difference function,
the following equation holds:

∂ D(X)

∂ X
= 0 (17)

The migration can be obtained by solving the equation

�X = −∂ D

∂ X

(
∂2 D

∂ X2

)−1

(18)

If the offset of X in any dimension is less than 0.5, the
extreme point is confirmed as the feature point; if �X is
greater than 0.5, it means that the position of the current point
has been shifted to the adjacent point, and the position of the
current point needs to be repeatedly corrected until the offset
is less than 0.5. The function value D(X) can be obtained
by substituting the modified result X into Equation (16), and
the unstable extreme points of low contrast can be filtered
according to this value. The contrast threshold is set to Tc, and
finally all the low contrast points of D(X) < Tc are removed.

Because of the strong edge response of the DOG function, in
order to obtain stable feature points, it is necessary to remove
the points with a high edge response. For the peak value with
poor accuracy in the function DOG, the main curvature in
the vertical edge direction is much larger than that along the
edge direction. The curvature ratio in the two directions can
be used to remove the unstable edge response point (Pal and
Maiti, 2018). Finding the principal curvature requires solving
the eigenvalues of 2 × 2 Hessian matrix H at the candidate
eigenvalues, which are:

H =
[

Dx x Dxy

Dxy Dyy

]
(19)

In Equation (19), Dxy represents the characteristic value of
row y and column y.

Since the principal curvature of function D(X) is directly
proportional to the eigenvalue of matrix H , the ratio of
curvature can be calculated by the ratio between eigenvalues.
The ratio is taken as the judgment standard of edge response
point removal (Qi et al., 2018). If the ratio of principal
curvature is greater than the threshold T γ , the candidate point
is removed.

2.2.3 Feature Point Orientation

In order to enable the feature points to have rotation invariance,
we need to assign a main direction to each feature point,
which can be constructed by using the gradient amplitude
and direction distribution characteristics of each pixel in
the neighborhood of the point. For image L(x, y) at scale
σ , gradient amplitude m(x, y) and direction φ(x, y) are
calculated by pixel difference:

(x, y) =
√

L(x + 1, y) − L(x − 1, y)2 + (L(x, y + 1) − L(x, y − 1))2

(20)

φ(x, y) = tan−1 L(x − 1, y) − L(x, y − 1)

L(x + 1, y) − L(x − 1, y)
(21)

In the actual calculation, the direction and gradient of the
pixels in the neighborhood window of the feature points are
counted to generate the gradient histogram. The histogram is
established with r◦ as the interval, and there are r

360 columns
in total. According to the direction φ(x, y) of each pixel,
the gradient m(x, y) is added to the corresponding direction
column of the pixel, and the peak position in the gradient
histogram is the main direction Ox of the feature point.

2.2.4 Feature Point Descriptor Generation

In order to achieve the subsequent matching, we must
construct the feature space for each feature point, and require
the feature space to describe the feature points as fully as
possible, so as to achieve the similarity between points of
the same name and the difference between points of different
names, and to maximize the probability of correctly matching
the feature points. To ensure the rotation invariance, the
coordinate axis direction of the neighborhood is rotated to
the main direction Ox of the current feature point X . Taking
the feature point as the center, an 8 × 8 pixel window
is selected, and the gradient value and direction of pixels
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Table 2 Types of targets included in the experimental images.

No. Target Category Type

1 Bird’s nest Bird’s nest
2 Insulator Suspension insulator, rod insulator, etc.
3 Tower Drum Tower, wine glass tower, dry word tower, etc.

are random. Then, eight gradient direction values of each
4 × 4 neighborhood block are accumulated to form a gradient
direction histogram, which is called a seed point. In practical
calculation, it is suggested to use 16 seed points of 4 × 4 to
describe, that is, to finally form the feature description vector
Vx with 4 × 4 × 8 = 128 dimensions. This method enhances
the denoising ability of the algorithm (Zhang et al., 2018).

2.3 Realization of Target Detection of Aerial
Image in Power Grid Inspection

Based on the transfer learning algorithm, the detection of a
target in aerial images in a power grid inspection is realized,
and the algorithm is completed. The main steps of the
algorithm are as follows:

(1) For reference image I , the skew parameters are obtained
by transfer learning algorithm, and the skew changes
caused by latitude angle are simulated. It is equivalent
to the transfer learning subsampling in the x-direction.
Before sampling, it needs to apply smooth filtering
processing, that is to use the Gauss kernel with the
standard deviation of Equation (22) for convolution, so
as to ensure that there is only a small aliasing error.

P = c
√

t2 − 1 (22)

In Equation (22), c stands for constant, t stands for skew
parameter and P stands for standard deviation.

(2) The skew parameter and the longitude angle parameter
ϕ are sampled according to certain rules. When the
latitude angle ϑ increases according to the fixed angle
interval, the image deformation will become larger and
larger. Therefore, the sampling density of the latitude
parameter should increase with the increase of ϑ . The
parameter t should be sampled according to the equal
ratio sequence, and the longitude parameter ϕ should
be sampled according to the equal difference sequence
related to the latitude parameter t .

(3) The sampling values of the obtained parameters t and ϕ

are substituted into the following equation:⎧⎪⎨
⎪⎩

Ik(tk1, ϕk2) =
[

cos ϕk2 − sin ϕk2

sin ϕks cos ϕk2

][
tk1 0

0 1

]

k = 1, . . . , m × n
(23)

In Equation (23), tk1 represents the sequence of equal
ratio in step (2), as shown in Equation (24);ϕk2 represents
the sequence of equal difference in step (2), as shown

in Equation (25); Ik represents the analog image of
reference image I .{

tk1 = 1, u, u2, . . . , um

k1 = 0, 1, . . . , m
(24)

In Equation (24), m represents constant, u represents the
proportional sampling parameter and u > 1.{

ϕk2 = 0, v
t , . . . , n v

t

k2 = 0, 1, . . . , n
(25)

In Equation (24), n stands for constant and v stands for
isochromatic sampling parameter.

(4) The set of feature points of reference image and a series
of simulated image are obtained, and the description
vector of each feature point is obtained. The set of
feature vectors is established respectively, and these
feature vector sets together constitute the total set
of feature vectors of reference image.

(5) The set of feature points of the distorted image I ′ is
obtained, and the description vectors of each feature point
are obtained to establish the set of feature vectors of the
distorted image I ′.

(6) The two feature vector sets are matched to detect the
target in aerial images in the power grid inspection.

3. EXPERIMENTAL STUDY

3.1 Experiment Process

The target detection algorithm for aerial images in power
grid inspection based on transfer learning is verified by
experiments. The aerial inspection image of UAV is selected
as the experimental image, the size of which is 352 * 288
pixels. Most of the images contain complex scenes that
include a tower, a large number of transmission lines with
insulator strings, some ground with color characteristics
similar to the insulator, etc. The target types included in the
experimental images are shown in Table 2.

Thirty images were used for the experiments, divided into
three groups. Each group’s detection target corresponds to
the serial number of the target type. The first group of
experimental aerial images for the power grid inspection are
shown in Figure 3.

The second group of experimental aerial images for the
power grid inspection are shown in Figure 4.
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Figure 3 The first group of experimental aerial images for power grid inspection.

Figure 4 The second group of experimental aerial images for power grid inspection.

The third group of experimental aerial images for the power
grid inspection are shown in Figure 5.

The target detection algorithm based on transfer learning
is used to detect the target of these 30 aerial images, and the
target coincidence rate is 29.56%–49.56%. The recall data in
the target compliance rate range is used as the experimental
data. The equation for the recall rate is:

recall = A

A + C
(26)

In Equation (26), recall stands for recall rate; recall stands
for the correctly identified target; A+C stands for the number
of targets in the test set, as shown in Figure 6.

In order to obtain more than a single result from this
experiment, the original two kinds of target detection
algorithms for aerial images in power grid inspection are used

for comparison; they are the algorithm based on the ratio
operator and the genetic algorithm. The recall data yielded
by the two algorithms are compared with those obtained with
the algorithm proposed in this paper.

3.2 Experimental Results

In the target coincidence rate range of 29.56%–39.56% of
the image, the recall rate comparison results of the first
group of experimental images using the target detection
algorithm based on transfer learning, ratio operator and
genetic algorithm are shown in Table 3.

The comparison results for the recall rate for the second
group of experimental images are shown in Table 4.

The comparison results for the recall rate of the third group
of experimental images are shown in Table 5.
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Figure 5 The third group of experimental aerial images for power grid inspection.

Figure 6 Schematic diagram of recall rate.

Table 3 Comparison test results for the recall rate for the first group of experimental images in the target coincidence rate range of 29.56%–39.56% of image.

Recall Rate (%)

Experimental
Image Group

Serial Number
of Experimental
Image

Algorithm based
on transfer
learning

Algorithm based
on Ratio
operator

Algorithm
based
on genetic
algorithm

First 1 16.3254 23.3697 25.3258
2 15.3247 21.0258 24.3658
3 10.2015 29.3254 29.3654
4 10.0201 24.2015 19.6582
5 9.3625 29.3247 35.9862
6 8.3258 15.3369 21.2045
7 7.3258 19.3258 20.0152
8 4.2015 18.3256 17.1544
9 8.3024 16.3258 18.3628
10 7.0215 14.9696 22.3688

Mean value 9.64112 21.15308 23.164589

According to the experimental results above, for the range
of 29.56%–39.56%, the recall rate of the algorithm based on
transfer learning is always lower than that based on the ratio
operator and genetic algorithm.

In the target coincidence rate range of 39.56%–49.56%
of the image, the experimental results of the recall rate for

the third group of experimental images based on the transfer
learning are compared with those of the other two algorithms
are shown in Table 6.

In the target coincidence rate range of 39.56%–49.56%
of the image, the experimental results of the recall rate for
the third group of experimental images based on the transfer
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Table 4 Comparison test results for the recall rate of the second group of experimental images.

Recall Rate (%)

Experimental
Image Group

Serial Number
of Experimental
Image

Algorithm
based on
transfer
learning

Algorithm
based
on Ratio
operator

Algorithm
based on
genetic
algorithm

Second

1 9.3647 19.3627 21.0247
2 3.3694 20.0201 20.0148
3 5.2022 18.3007 19.3366
4 10.2581 25.3011 18.2014
5 9.3821 23.3689 19.3663
6 2.0358 10.2058 15.2018
7 9.3655 11.3288 14.2018
8 4.3055 17.2166 26.3014
9 8.0124 19.3857 19.3302
10 7.0917 13.9616 21.3668

Mean value 6.83874 17.8452 19.43458

Table 5 Comparison test results for recall rate of the third group of experimental images.

Recall Rate (%)

Experimental
Image Group

Serial Number
of Experimental
Image

Algorithm
based on
transfer
learning

Algorithm
based on
Ratio
operator

Algorithm
based on
genetic
algorithm

Third

1 8.2204 18.3387 25.0249
2 4.3695 22.0201 22.0054
3 3.6951 17.2177 14.3045
4 9.3101 20.3214 12.0128
5 8.3201 20.3021 11.3053
6 9.3014 19.2056 19.0418
7 2.3025 13.3228 19.2098
8 2.3925 12.2156 22.3964
9 6.0022 17.3801 18.3369
10 5.0187 10.9021 20.3087

Mean value 5.89325 17.12262 18.39465

Table 6 Recall rate comparison test results of the first group of experimental images.

Recall rate (%)

Experimental
Image Group

Serial Number
of Experimental
Image

Algorithm
based on
transfer
learning

Algorithm
based on
Ratio
operator

Algorithm
based on
genetic
algorithm

First

1 2.6947 20.0111 22.0210
2 5.3004 19.3320 20.3021
3 1.0258 16.3028 21.0214
4 3.3692 19.3021 18.3225
5 4.6358 25.0214 24.2014
6 8.3201 20.0001 20.6978
7 6.3048 23.3021 27.0102
8 3.2018 19.3216 13.2504
9 9.2585 18.3688 11.3012
10 4.2015 10.9366 12.0588

Mean value 4.83126 19.18986 19.01868
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Table 7 Recall rate comparison test results for the second group of experimental images.

Recall Rate (%)

Experimental
Image Group

Serial Number
of Experimental
Image

Algorithm
based on
transfer
learning

Algorithm
based on
Ratio
operator

Algorithm
based on
genetic
algorithm

Second

1 2.3369 11.3607 22.0367
2 1.3058 10.0381 24.0147
3 5.0252 17.0147 21.0002
4 12.2071 22.0171 17.2194
5 8.3301 20.3691 15.3600
6 3.1248 10.2086 16.2880
7 6.3285 14.3247 10.2318
8 3.3595 13.2148 25.3018
9 4.0192 15.0107 13.7902
10 6.0367 11.9046 20.3614

Mean value 5.20738 14.54631 18.56042

Table 8 Comparison test results for recall rate of the third group of experimental images.

Recall Rate (%)

Experimental
Image Group

Serial Number
of Experimental
Image

Algorithm
based on
transfer
learning

Algorithm
based on
Ratio
operator

Algorithm
based on
genetic
algorithm

Third

1 2.0214 16.6667 20.0019
2 4.0893 20.0285 20.0078
3 5.6900 11.0007 16.3025
4 8.3761 21.0004 11.0198
5 7.3207 20.0587 16.3269
6 8.3128 17.2766 14.0302
7 5.3193 14.3028 18.2021
8 1.3396 10.2126 21.0896
9 5.0004 18.3011 17.3309
10 5.0188 12.9008 27.3697

Mean value 5.24884 16.17489 18.16814

learning are compared with those of the other two algorithms
are shown in Table 7.

In the target coincidence rate range of 39.56%–49.56%
of the image, the experimental results of the recall rate for
the third group of experimental images based on the transfer
learning are compared with those of the other two algorithms
are shown in Table 8.

According to the experimental results above, in the target
coincidence rate range of 39.56%–49.56% of the image, the
recall rate of the image target detection algorithm based on
transfer learning is always lower than that based on the ratio
operator and genetic algorithm.

4. CONCLUSIONS

The target detection algorithm based on transfer learning can
be applied to the automatic inspection of future railway trans-
mission lines and the entire national power grid transmission
lines, giving it a broad range of applications.
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