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In order to improve the quality of high-resolution integrated images, a longitudinal deformation analysis method is applied to such images based on
multi-sensors. The high-resolution integrated images are collected by CMOS (complementary metal oxide semiconductor) and CCD (charge-coupled
device) image sensors, and are then fused using the Laplace shape decomposition method. The fast ICA algorithm is applied to enhance the fused
high-resolution integrated images. Based on the processed images, a high-resolution integrated image longitudinal deformation model is constructed,
and the model is trained by an implicit support vector machine. The longitudinal deformation analysis results of the high-resolution integrated image
are obtained by combining the longitudinal deformation distances. According to experimental results, the proposed method has high analytical
accuracy, good image longitudinal deformation processing, high level of efficiency in terms of longitudinal deformation analysis, and good practical
application.
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1. INTRODUCTION

Over the past few decades, CCD image sensors have
dominated the image sensor market [1,2]. However, these
sensors have several disadvantages: it is difficult to integrate
monolithically the driving circuit and the signal processing
circuit with the imaging array, high voltage is required, the
yield is low, and the cost is high [3]. The CMOS image
sensor is not a recent development. It emerged almost at
the same time as the research on the charge-coupled device
(CCD) image sensor. However, the technology at that time
was not advanced; hence, the images captured by CMOS
sensors were poor quality, and had low resolution and noise
reduction, and the light sensitivity is not enough, so CMOS
sensors have largely been ignored and not improved. In
order to overcome these shortcomings, the development of
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CMOS image sensors has been carried out abroad [4]. With
the continuous development of standard CMOS large-scale
integrated circuit technology, the technical difficulties associ-
ated with the manufacture of the earlier CMOS image sensor
have found corresponding solutions, thus greatly improving
CMOS image sensors [5]. The CMOS image sensor itself
has the incomparable advantages of CCD devices, such as
the monolithic integration of pixel array and processing
circuit, low voltage, low system complexity and low cost.
Therefore, a high-quality, low-cost CMOS image sensor has
been designed and manufactured [6]. CMOS and CCD
image sensors have attracted worldwide attention since their
appearance, and their applications involve various industries
such as agriculture, forestry, land, surveying and mapping,
transportation, water conservancy, electric power, military,
environmental monitoring and management. Combining the
advantages of these two sensors, high-resolution integration
using multi-sensor acquisition has become possible. A target
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Figure 1 CMOS image sensor pixel structure.

to be detected in a high-resolution integrated image will
change due to various factors, which makes image target
detection very difficult. Among the factors contributing to
this change are not only the changes in illumination and angle,
but also changes in scale deformation, intra-class shape, and
other visual properties. Of these, longitudinal deformation
will lead to a significant decrease in image quality and
affect the accuracy of target detection. Therefore, the study
of a method for longitudinal deformation analysis of high-
resolution integrated images is of great significance. Hence,
this paper proposes a multi-sensor-based, high-resolution
integrated image longitudinal deformation analysis method.
The proposed method and its feasibility and validity are
verified by experiments.

2. DESIGN OF LONGITUDINAL
DEFORMATION ANALYSIS
METHOD FOR HIGH-RESOLUTION
INTEGRATED IMAGES

2.1 High-Resolution Integrated
Image Acquisition

2.1.1 High-Resolution Integrated Image
Acquisition Based on Multiple Sensors

(1) CMOS image sensor
A CMOS image sensor comprises photosensitive devices,

amplifier circuits, A/D conversion circuits, timing generation

circuits, digital signal processing circuits, etc. on a single chip
by means of an integrated circuit processing technology. It
has a high degree of integration and powerful functions. It is
characterized by good stability and low cost, and extensive
application prospects [7,8]. The CMOS image sensor is
mainly composed of a pixel photosensitive unit array and
auxiliary circuits. The pixel photosensitive unit array is the
core component. It mainly converts the received optical signal
into an electrical signal to realize the function of photoelectric
transformation, thereby facilitating image acquisition. The
different pixel structures of CMOS image sensing can be
divided into two types: passive and active. The pixel structure
is shown in Figure 1.

The auxiliary circuit inside the sensor is the key element
responsible for collection and transmission, and functions
such as timing drive, signal amplification, A/D conversion
and interface output [9]. The configuration of a typical image
sensor is shown in Figure 2.

The photo sensitive pixel units are arranged in a two-
dimensional array along both X direction and Y direction
respectively. Each pixel unit has its own unique coordinate
address in both X direction and Y direction in the array.
And the pixel output can be determined by the X and Y
directions and controlled by the address decoder. In each
column of pixels, there is a corresponding column amplifier,
and the output signal of the column amplifier is connected with
the multi-channel analog switch (MCAS), and the address
decoder in the direction controls the MCAS [10,11]. When
the image sensor works normally, the corresponding analog
switch on the row pixel unit is controlled by the address
decoder in the Y direction. When the switch is turned on, the
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Figure 2 Organizational structure of CMOS image sensor.

Figure 3 Photoelectric transformation characteristics of CCD devices.

signal of the pixel is transmitted to the corresponding column
through the row analog switch, and the address is passed
through the X direction. The control signal of the decoder
is transmitted to the amplification module, and the A/D
conversion module performs A/D conversion on the received
output signal of the amplification module and transmits it to
the signal preprocessing module. This is output to the outside
through the sensor module for external circuit calling.

(2) CCD image sensor
CCD is a semiconductor device consisting of many neatly-

arranged photodiodes which can sense light and transform
the light signal into an electrical signal, which is then
transformed into the digital image signal by an external
sampling amplifying circuit and an analog-to-digital (A/D)
conversion circuit. Being a photoelectric transformation
device as well, CCD contains a photosensitive unit, and an
input structure and output structure. Its basic function is
to generate, store, transmit and detect a signal charge. Its
prominent feature is that the charge serves as signal [12].
The photoelectric transformation characteristics of the CCD
device are shown in Figure 3.

On the coordinate axis, the abscissa S represents the amount
of exposure, and the ordinate represents the output voltage. It

can be seen that when the light integration time set by the CCD
device is too lengthy,or the received light intensity is too great,
the charge in the CMOS potential trap will become saturated
and may even overflow, interfering with the signal of the
adjacent photosensitive unit. The increase of the CCD output
signal reduces the sharpness of the image, and even causing the
image to be blurred and seriously distorted. Usually, in order
to reduce the luminous flux obtained at the CCD pixel point,
the light integration time is decreased, the aperture is narrowed
or a neutral attenuation filter is placed in front of the optical
lens. The upper limit of the CCD temperature measurement
range depends on the CCD saturation output voltage size and
the camera exposure time, that is, the integration time of the
CCD device.

The color CCD camera embeds red (R), green (G), and blue
(B) color filters on the surface of the CCD sensor to separate
colors and capture images. The three primary colors specified
by the International Commission on Illumination are: red
λr = 700nm, green λg = 546.1nm, and blue λb = 435.8nm.
According to the principle of three primary colors, any color
can be created by using these three primary colors. The
spectral response characteristic curve of the three primary
color signals of the color CCD camera is shown in Figure 4.
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Figure 4 CCD spectral response characteristic curve.

Figure 5 CCD image acquisition module.

The abscissa in the figure represents the light wavelength
(unit is nm), and the ordinate represents the relative value
of the output signal response of the CCD (dimensionless, the
maximum value is 1).

It can be seen from Figure 4 that the spectral response
bands of the color components R, G, and B of the CCD
photosensitive unit are diff erent, as is the radiant energy
of each component. The channel output values of the three
primary colors of the color CCD have a linear relationship with
the monochromatic radiance of the high-temperature radiator
within a certain range. If the CCD works in the linear region,
the ideal monochromatic response can be assumed for the
spectral response characteristics of the CCD. The color CCD
camera’s spectral response range is within the visible light
band (380nm–780nm). If the spectral response characteristic
functions of the three primary color signals of the color CCD
are r(λ), g(λ) and b(λ) , then the R, G, B of each pixel of the
color CCD camera is:⎧⎪⎨

⎪⎩
R = A

∫ 780
380 L(λ, T )r(λ)dr

G = A
∫ 780

380 L(λ, T )g(λ)dr

B = A
∫ 780

380 L(λ, T )b(λ)dr

(1)

The CCD image acquisition module is shown in Figure 5.
The internal registers of the CCD signal processor can be

accessed through the SPI interface, and the registers of the
CCD signal processor AD9920A are written through the SPI
interface of the embedded processor BF533 to generate the
CCD drive pulse signal required by the ICX282AQ sensor:

vertical drive pulse signal, horizontal drive pulse signal,
shutter control signal. The output pixel signal of the CCD
sensor ICX282AQ is stored in the FIFO buffer of USB2.0
after AD conversion.

2.1.2 Image Fusion Processing

The image tower decomposition-based, high-resolution inte-
grated image fusion method is used for multi-resolution and
multi-scale image fusion. The fusion process is carried out at
various scales, spatial resolutions and decomposition layers.
This fusion is based on Laplace shape decomposition and
consists of two parts:

(1) Laplace-shaped decomposition of the image
The steps used to create a Laplace-shaped decomposition of

an image are explained below. Assuming the original image is
G0, the bottom layer of the Gaussian pyramid is G0 [13], and
the l-th layer image Gl is constructed as follows: first convolve
the l − 1-layer image Gl−1 with a window function w(m, n)
having low-pass characteristics, and then convolve the result.
For down-sampling of every row and every column, that is:

Gl =
2∑

m=−2

2∑
n=−2

w(m, n)Gl−1(2i + m, 2 j + n) (2)

Among them, 0 ≤ l ≤ N.N is the top layer number of
the Gaussian pyramid. Cl refers to columns of the l-th layer
image, and Rl refers to rows of the l-th layer image; w(m, n)
should satisfy the separable condition, namely:
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w(m, n) = w(m)w(n) (3)

Among them, w(0) = a, w(1) = w(−1) = 0.5, w(2) =
w(−2) = a

2 , a takes the value 0.4. The reduction operator
Reduce is introduced to simplify writing; then Formula (2) is
written as:

Gl = Reduce(Gl−1) (4)

In this way, the Gaussian pyramid is comprised of
G0,G1, . . . ,GN . where G0 is the pyramid’s bottom layer
and GN is the pyramid’s top layer. The total number of
Gaussian pyramid layers is N + 1 [14]. The Gaussian
pyramidal decomposition of the visible image is obtained by
sequentially convolving the low-level image with the weight
function w(m, n) having low-pass characteristics, and then
down-sampling the convolution result with each row and each
column. Since the image size of each layer decreases from the
bottom layer to the top layer of the pyramid, and the size of
the upper layer image is equal to 1/4 of the image size of the
previous layer, it can be considered that the Gaussian pyramid
is a multi-resolution, multi-scale, low-pass filter. [15].

Gl is interpolated to enlarge, resulting in an enlarged image
G∗

l . In this way, G∗
l and Gl−1 are the same size. The

mathematical formula is:

G∗
l = 4

2∑
m=−2

2∑
n=−2

w(m, n)G
′
l

(
i + m

2
,

j + n

2

)
(5)

In order to simplify writing, the enlargement operator
Expand is introduced, namely:

G∗
l = Expaand(Gl) (6)

G∗
l is the same size as Gl−1, but G∗

l is not equal to Gl−1.
It can be seen from Formula (6) that the gray value of the new
pixel interpolated between the original pixels is determined
by the weighted average of the gray value of the original pixel
[16]. Because Gl is obtained by low-pass filtering Gl−1,G∗

l
contains less detailed information than Gl−1. Make:{

L Pl = Gl − Ex pand (Gl+1), 0 ≤ 1 < N

L PN = GN , 1 = N
(7)

In the formula, L Pl is Laplace shape decomposition’s l-th
layer image.

In this way, the Laplacian pyramid consists comprised
of L P0, L P1, . . . , L PN . Each layer of the image refers to
the difference between the Gaussian pyramid image and the
upper layer image after being enlarged by the magnification
operator, which is equivalent to bandpass filtering. Therefore,
the Laplacian pyramid is also known as ‘bandpass tower
decomposition’.

According to Formula (7), we can get:{
Gl = L Pl + Expand (Gl+1), 0 ≤ 1 < N

GN N = L P, 1 = N
(8)

Starting from the Laplacian pyramid’s top layer and going
from top to bottom, recursively according to Formula (8), the
relevant Gaussian pyramid can be restored, and the original

image G0 can finally be acquired. After derivation, Formula
(8) can be expressed as:

G0 =
N∑

l=0

L Pl,l (9)

Formula (9) shows that the image of each layer of the
Laplacian pyramid is gradually interpolated and enlarged by
the Expand operator until it is the same size as the original
image, and then added together to reconstruct the original
image G0.

(2) Image fusion method based on Laplace shape decom-
position

The image fusion process depending on a certain tower-
shaped decomposition is performed independently on the
images of each decomposition layer. The basic steps of high-
resolution integrated image fusion on the basis of Laplace
shape decomposition are described below.

Decompose two images that will be fused by Laplacian
shape respectively, and establish the Laplacian pyramid for
each image.

Separately fuse each decomposition layer of the image
pyramid. Various decomposition layers can adopt various
fusion rules. Finally, the Laplacian pyramid of the fused
image is obtained.

The image reconstruction is performed on the Laplacian
pyramid of the fused image, and the obtained reconstructed
image is the fused image.

2.2 Image Enhancement Processing

As a new blind source separation (BSS) technology which has
been developed in recent years for independent component
analysis (ICA) is a new method of signal processing and data
analysis based on signal high-order statistics [17]. ICA has
three basic models: general model, noise model and noise-free
model. In practical applications, the noise is usually ignored.
The noise-free ICA model is used to enhance the fused high-
resolution integrated image.

x = A · s (10)

where s = [s1, s2, . . . ., sN ]T is the source signal. A refers to a
M×N dimensional matrix, and x = [x1, x2, . . . ., xN ]T refers
to the observation signal. The usual additional assumptions
are:

(1) m ≥ n;

(2) Source signals si are statistically independent of each
other;

(3) At most one source signal is Gaussian;

(4) A is the full rank matrix;

(5) Each source signal has zero mean and unit power.

The target of ICA is to predict the separation matrix W and
separate the source signal s from the observation signal x , that
is:

y = W · x (11)
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If yi is as independent as possible, then yi is approximately
regarded as si .

The point of ICA algorithm is to judge yi , the statistical
independence degree. This paper uses the method of nonlinear
uncorrelation to measure independence.

For statistically independent source signal vectors, the joint
probability density is separable, and the arbitrary order joint
moments of independent random variables are also separable.
Assuming that there are two independent sources S1 and S2,
there are:

p(S1, S2) = p(S1)p(S2) (12)

E{Sk1
1 Sk2

2 } = E{Sk1
1 }E{Sk2

2 } (13)

where k1 and k2 are integers greater than zero. The general
description is:

E{ f (S1)g(S2)} = E{ f (S1)}E{g(S2)} (14)

where f and g refer to two nonlinear functions. The Formula
14 above shows that the nonlinear uncorrelation of random
variables means that they are independent of each other.
Therefore, the independence of ICA output results can be
achieved by introducing nonlinear link g(·) at the output of
ICA model. The independence of the separation results is
measured by calculating the covariance matrix of the nonlinear
output. Obviously, if the components of the output vector
y = (y1, y2, . . . , yN )

T are independent of each other. Not
only its covariance matrix Cy but also the covariance matrix
CZ of its nonlinear output z = (z1, z2, . . . , zN )

T are a
diagonal matrix.

The FastICA algorithm, also known as a fixed-point
algorithm, is a quick optimization iterative algorithm. The
diff erence between general algorithms and ordinary neural
network algorithm lies in that this algorithm adopts batch
processing. In other words, a large number of sample data
participate in the operation in each iteration. However,
seen from distributed parallel processing, this algorithm can
still be regarded as a neural network algorithm. Fast ICA
algorithm is based on kurtosis, maximum likelihood and
negative entropy. This paper highlights the FastICA algorithm
based on negative entropy. Compared with other ICA
algorithms, the FastICA algorithm has many advantages: for
example, it has fast convergence speed, requires no selection
of step parameters. It is easy to use, and can be optimized
by selecting appropriate nonlinear function g(·), parallel,
distributed, simple calculation, few memory requirements,
etc.

The FastICA algorithm consists of two parts: observation
signal preprocessing and independent component extraction.
Signal preprocessing includes centralization and whitening.
Centralization involves subtracting the average value to make
x a variable with a median of 0, which simplifies the calcu-
lation. Whitening is the linear transformation of observation
signal x into vwith unit variance and uncorrelated components
through PCA network. Since whitening can eliminate the
correlation among observation signals, it also simplifies the
extraction of subsequent independent components.

Next, the whitening signal v is further processed; that is, the
matrix W is found according to the negative entropy criterion
in order to separate the independent components. By selecting

W, J (y) is the largest. According to Formula (14), J (y) is the
largest, that is, E{G(y)} is the largest. Find the extreme value
of E{G(y)} = E{G(wT x)}, E{G(y)} = E{G(wT x)} = 0, g
is the derivative of G(·), and g

′
(·) is the derivative of g(·).

According to Newton’s iterative theorem:⎧⎨
⎩w

+ = w−[E{xg(wT x)}−βw]
E{g′

(wT x)}−β
w∗ = w+

‖w+‖
(15)

where β = E{xg(wT x)}, w+ is the Newton iteration result,
and w∗ is the updated value after normalization of w+. By
simplify ing the above formula, the following fixed-point ICA
algorithm can be obtained:{

w+ = E{xg(wT x)} − E{g
′
(wT x)}w

w∗ = w+
‖w+‖

(16)

The method for removing the extracted independent
component is as follows (assuming that k component has been
estimated):

wk+1 = wk −
k∑

j=1

wT
k+1w j (17)

If it does not converge, repeat this process until it converges,
and an independent component can be estimated. If there
are n source signals, n independent components must be
estimated. After extracting one component at a time, subtract
the independent component from the observation signal and
repeat until all components are extracted to complete the
enhancement of the high-resolution integrated image.

2.3 Longitudinal Deformation Analysis
of High-Resolution Integrated Image

(1) Build image longitudinal deformation model
It is assumed that G = (V , E) represents the object model

in the high-resolution integrated image. V = {v1, v2, . . . , vn}
represents n parts, and (vi , v j ) ∈ E represents the connection
between the two parts. A certain position layout of an object
can be expressed as L = {l1, l2, . . . , ln}, and 1i represents
the position of vi . If mi (li ) is used to measure the degree
of mismatch with the template at position fi in the high-
resolution integrated image vi , and diJ (li , l J .) is used to
measure the degree of change of the model when vi and v j are
at positions li and l j in the image respectively. Then, when
each block in the model matches the image best, and the layout
with the closest relative relationship between the blocks and
the model after block matching is the best position layout of
an image relative to the model. The optimal location layout
can be described by the following formula:

L∗ = argL min

⎛
⎝ n∑

i=1

mi (li )+
∑

(vt,vJ )∈E

diJ (li , l j )

⎞
⎠ (18)

A deformation model with n blocks can be expressed
as (F0, P1, . . . , Pn, b), where F0 represents root filter, Pi

represents the model of the i -th block in the model, and b
represents an offset term. Each block in the deformation
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model can be represented as (Fi , vi , di ), where Fi is the i -
th block filter. vi is a two-dimensional vector representing the
“anchor” position of the i -th block filter relative to the root
filter position, and di is a four-dimensional vector representing
a deformation cost of the j -th block filter relative to its
“anchor” position, which is measured by a quadratic function.
Then the score of a deformation model consists of the
following parts: the score of each filter’s respective position,
the deformation cost of each block filter corresponding to its
“anchor” position and an offset term, which can be expressed
by the following formula:

score(p0, . . . , pn) =
n∑

i=0

F
′
i · ∅(H, pi)−

n∑
i=1

di∅d

× (dxi , dyi )+ b (19)

of which:

(dxi , dyi) = (xi , yi )− (2(x0, y0)+ vi ) (20)

represents an offset of the i -th block filter in the deformation
model corresponding to its “anchor” position. Then there is:

∅d (dx, dy) = (dx, dy, dx2, dy2) (21)

where ∅d(dx, dy) represents the deformation eigenvector,and
the second term in Formula (21) represents the deformation
cost.

If the state of the filter in an image area to be detected is
called a hypothesis and expressed by z = {p1, p2, . . . , pn},
the score function can be represented in the form ofβ·ψ(H, z),
where β is a vector of various parameters of the model. β and
ψ(H, z) are respectively expressed as follows:

β = (F
′
0, . . . , F

′
n , d1, . . . , dn, b) (22)

ψ(H, z) = (∅(H, p0), . . . ,∅(H, pn),∅d (dx1, dy1), . . . ,∅d

× (hn, dyn), 1) (23)

(2) Model training
The learning of the model involves the learning of the model

parameters, which can be done with the relatively simple and
practical SVM method. However, the position of the block
filter relative to the root filter in the model is unknown, so
the SVM method cannot meet the needs of model parameter
learning. Therefore, the latent SVM method is proposed. A
significant advantage of latent SVM is that it will eventually
become a semi-convex problem like a conditional random
field. If the latent information is defined as a positive example,
the training problem becomes a convex problem. The training
process is described in detail below.

An implicit support vector machine (ISVM) can use the
following formula to represent the classifier that can express
the score of sample x :

fβ(x) = max
z∈Z(x)

β · ∅(x, z) (24)

where z represents an implied value. Z(x) is set to define all
possible implied values of sample x . The determination of
sample x can be realized by thresholding fβ(x). Compared
with the classical SVM algorithm, the marked sample set

D = ({x1, y1〉, . . . , {xn, yn〉) is defined, and the parameter
β is trained by objective function (24) minimization:

L D(β) = 1

2
‖β‖2 + C

n∑
i=1

max(0, 1 − yi fβ(xi )) (25)

where max(0, 1− yi fβ(xi )) represents standard “hinge loss”,
and constant C achieves the control of the relative weight of
the regular term. Note that if there is only one implicit value,
that is, |Z(xi )| = 1, then fβ to β is linear. At this time, the
linear support vector machine can be regarded as a special
case of implicit support vector machine.

If Z p represents a set of implied values of every positive
sample in the training set D, an auxiliary objective function
can be defined

L D(β, Z p) = L D(z p)(β) (26)

where DZ p is derived from the training set D by limiting
the implied value of each positive sample. That is, zi in set
Z(xi ) = {zi } represents an implied value of sample xi . Then
the goal becomes minimization L D(β, Z p):

L D(β) = min
Z p

L D(β, Z p) (27)

In practical application, the method of cooperative descent
is used to minimize L D(β, Z p).

The specific steps are:

(1) Re-label positive samples: optimize Z p of L D(β, Z p)

by selecting the implied value of positive samples that
can maximize f (x).

(2) Optimization parameter β: optimize the parameters in
L D(β, Z p) by solving the convex programming problem
of L D(z p)(β).

Apply the two steps above, continuously improve the value
of L D(β, Z p) until convergence, when a local optimum will
be obtained. The longitudinal deformation of high-resolution
integrated image is analyzed by using the trained longitudinal
deformation model of high-resolution integrated image, and
the relevant analysis results are obtained. The specific formula
is:

D =
L D(β, Z p)

N∑
p=1
(u(p)2 + v(p)2)

1
2

NS
(28)

where N is the total number of pixels of the original high-
resolution integrated image, and NS is the number of SIFI
points matched between the original image and the actual
image. The larger the value of D (i.e., the longitudinal
deformation distance), the greater will be the distortion of
the target image, while the smaller the value of D (i.e.,
the longitudinal deformation), the less will be the image
distortion.

3. EXPERIMENTAL DESIGN

To determine the effectiveness of the proposed method, several
experimental tests were conducted.
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Figure 6 Images of some experimental samples.

To ensure the authenticity and reliability of experimental
results, various parameters were established for the experi-
ments: tests were conducted using a computer with 10 core
Intel Xeon E5-2640 CPU, 64GB memory, HDD 10TB hard
disk and Window 10 operating system, and the simulation
software was MATLAB 7.2.

The sensor was used to collect the images of multiple
experimental samples. After integration and screening, 2000
experimental samples were selected for testing, of which 500
sample data were used as training samples, and the other 1500
data were used as experimental samples. Several experimental
samples are shown in Figure 6.

The longitudinal deformation of high-resolution integrated
image is analyzed using this method, and the results are shown
in Figure 7.

By analyzing the results shown in Figure 7, it can be seen
that the position of longitudinal deformation in each image can
be accurately found by using this method, thereby proving the
high level of accuracy that can be achieved by the proposed
method, and broadening its application.

These high-resolution integrated images with longitudinal
deformation are further processed using this method to
obtain higher quality image processing results, as shown in
Figure 8.

By analyzing the longitudinal deformation processing
results of the high-resolution integrated image in Figure
8, it can be seen that these problematic images can be
restored according to the longitudinal deformation position
recognition results of the high-resolution integrated image
obtained by this method. The processed image does not
have the problem of longitudinal deformation, and the image
quality is better, which can effectively solve the problem
of longitudinal deformation of the high-resolution integrated
image.

Using the method proposed in this paper, 1500 experimental
samples were divided into 10 groups on average, and the
time required for the longitudinal deformation of high-
resolution integrated images was calculated. Table 1 shows
the experimental results.

The data in Table 1 shows that the maximum time taken
to analyze the longitudinal deformation of high-resolution
integrated image by this method is 2.56s, the minimum
value is 1.35s, and the average value is 1.76s. Therefore,
the time taken by this method to analyze the longitudinal

Figure 7 Analysis results of longitudinal deformation of high-resolution
integrated image.
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Figure 8 Processing results of longitudinal deformation of high-resolution
integrated image.

Table 1 Time of longitudinal deformation analysis of high-resolution
integrated image.

Group Analysis time/s
Group 1 2.56
Group 2 1.45
Group 3 1.36
Group 4 1.84
Group 5 1.56
Group 6 2.13
Group 7 2.01
Group 8 1.75
Group 9 1.56

Group 10 1.35
average value 1.76

deformation of high-resolution integrated image is shorter, the
efficiency is greater, and the longitudinal deformation analysis
results of high-resolution integrated image can be obtained
faster.

4. CONCLUSION

With the development of global intelligent devices, sensors,
as intelligent visual sensing devices, are developing along the
direction of different spectra, higher resolution and higher
acquisition tilt frequency. They have been widely used in
scientific research, military operations, transportation, public
safety, machine vision and other fields. With more intense
research on the mechanism and motion law of high-speed
transient phenomenon, the sensor system provides a powerful
means for its testing, recording and analysis. Therefore,
this paper proposes a high-resolution integrated image
longitudinal deformation analysis method based on multi-
sensors, and details its implementation process. According
to experimental results, the high-resolution integrated image
longitudinal deformation analysis effect of this method is
better. The high-resolution integrated image processed in this
paper has greater definition, shorter comprehensive analysis
time and better efficiency, which will broaden its application
in practice.
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