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Traditional methods apply the generalized linear model in risk assessment, data estimation and other fields, but these approaches have problems
such as high time cost and poor accuracy. Therefore, this paper incorporates the Elastic-Net method into the generalized linear model to improve
the accuracy of the generalized linear model in terms of calculation and classification. Firstly, the general linear model and the generalized linear
model are described, and the Elastic-Net method and its related properties are examined. Then, the Elastic-Net method is incorporated into the
generalized linear model, and the classification effect of the model is analyzed by means of an example. Experimental results show that when the
Elastic-Net method is introduced into generalized linear models, this can effectively improve the accuracy and efficiency of model classification and
the performance of the model.
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1. INTRODUCTION

A linear model is an important branch of mathematical
statistics with early development, abundant theory and strong
application [1]. Over the past few decades, the linear model
has not only been very active in theoretical research, but also
has been widely used in industry and agriculture, meteorology
and geology, economic management, medicine and health,
education and psychology. With the continuous progress
of modern science and technology, our data collection
technology has also been greatly developed [2,3]. Therefore,
given the large amount of data being generated, how to extract
useful information has become the focus of our attention.
Statistical modeling can undoubtedly deal with this problem
well. At the beginning of the model, we usually add as
many independent variables as possible to the model to reduce
the deviation of the model, but given the model can be
interpreted, the ease of data collection and calculation cost
and other reasons, we need to find the response variables
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in the modeling process of the most influential independent
variable subset, so as to improve the interpretability of the
model and the prediction precision [4,5]. Therefore, the
selection of variables is a very important and problematic
issue in statistical modeling. Relevant scholars have made
some progress in this regard.

Teng and Ma [6] proposed a rice-planting risk assessment
method based on a generalized linear model. The generalized
linear model was used to predict the amount of loss that would
be sustained by a rice crop after a natural disaster. Under the
assumption that the fluctuations in yield follow the Boolean
distribution rule, the linear relationship between the disaster-
causing factors and the yield fluctuations is established to
assess the vulnerability of the disaster-bearing entity. The
weather generator model is used to simulate the occurrence
of natural disaster factors in each region to determine the
probability of a natural disaster occurring (risk assessment).
Finally, the risk assessment result is expressed quantitatively.
This method can accurately determine the rice-planting risk.
In this instance, the generalized linear model is very effective,
although the cost is high. He et al. [7] systematically
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introduced the traditional Bayesian small area estimation
method, and introduced the generalized linear model into the
hierarchical Bayesian method to solve the discrete variable
estimation reasoning problem. Then the basic theoretical
mechanism and estimation model of classified data are
constructed. The results show that the hierarchical Bayesian
generalized linear model can accurately estimate the total
parameters of the target domain when the sample size is
large enough. The new estimation model not only makes
full use of prior information and auxiliary information,
but also can be used to estimate complex data. Zhu [8]
proposed a hybrid attribute data clustering method based
on a generalized linear model, and constructed a low-order
multivariate generalized linear model to deal with the problem
of clustering massive amounts of data. Taking into account the
temporal characteristics of data attributes, the attribute time
series matrix was obtained. When processing mixed-attribute
data based on optimized K-prototypes clustering, the time
series matrix of attributes was considered. By considering
the distance between the sample and the cluster center, and
taking into account the known content of the sample, the
optimization method was adopted to calculate the degree of
data dissimilarity and the distance between the sample and
the cluster set. When the cluster result achieves stability, the
operation is terminated and the cluster result is output. This
method can achieve accurate clustering of mixed-attribute
data, but the clustering process is complicated. Yuan et al.
[9] proposed a statistical inference method involving a mixed
generalized linear model, based on heterogeneous overall first
moment and second moment of the existing conditions. Using
the generalized linear mixed models for the overall mean value
model, the researchers developed the tectonic extension and
the pseudo likelihood function. Then, used the EM algorithm
to average and estimate its parameters,divergence and mixture
ratio, and through the Monte Carlo simulation to verify the
effectiveness of the proposed model parameter estimation
method. This method has a good data fitting effect but is
costly in terms of time.

To solve the above problems, this paper applies the Elastic-
Net method to the generalized linear model, and verifies the
application of Elastic-Net method in the generalized linear
model by analyzing the effect of data classification and
selection by means of examples.

2. METHOD

2.1 Generalized Linear Model

A generalized linear model is a regression model that
has greater applicability and practicability based on the
generalization of the above model assumptions.

(1) The distribution of response variables can be generalized
to an exponential dispersion family, such as normal
distribution, Poisson distribution, binomial distribution,
negative binomial distribution, gamma distribution,
inverse Gaussian distribution [10].

(2) Research object: The main research object of the

generalized linear model is still the mean value R(Y )

of the response variable.

(3) Connection mode: The connection function used in the
generalized linear model can theoretically be arbitrary,
not limited to f (x) = x . Of course, the connection
function that is selected must be adapted to specific
research purposes [11]. At the same time, there
are standard connection functions corresponding to
the distribution mentioned in hypothesis (1), such as
normal distribution corresponding to the identity, Pois-
son distribution corresponding to the natural logarithm
function, etc.

It can be seen that the generalized linear model mainly
extends the ordinary linear model in two respects: on the one
hand, the expectation of the response variable is connected
with the linear combination of independent variables by
setting a connection function. On the other hand, the
distribution of Y is no longer limited to the normal distribution,
but is extended to the exponential distribution family [12–
15]. These generalizations allow us to study more general
problems.

Specifically, the generalized linear model has the following
three assumptions:

(1) Random component: that is, the response variable Y
obeys the exponential distribution family and the density
function is:

f (y, θ, ϕ) = exp

{
yθ − b(ϕ)

a(ϕ)
+ c(y, ϕ)

}
(1)

where θ is the natural parameter and ϕ is the graduated
parameter [16]. Under certain canonical conditions, it
can be proved that: θ passes b(·) associated with R(Y |X),
μ = R(Y |X) = b′(θ); Given X , the variance of the
response variable Y is a function of the mean and ϕ, i.e.:

V ar(Y |X) = a(ϕ)b′′(θ) (2)

(2) System components: namely, linear combinations of
independent variables:

η = β1 X1 + . . . + βp X p (3)

(3) Connection function: The connection function h is a
monotone differentiable function, which relates η to
R(Y |X):

h(μ) = η = β1 X1 + . . . + βp X p (4)

The monotonicity of h guarantees that this is a one-to-
one mapping, so we can express R(Y |X) in terms of the
inverse of the joining function:

R(Y |X) = h−1(β1 X1 + βp X p) (5)

Let’s call it F(Xβ) = h−1(Xβ), V (Xβ) = √
a(ϕ)b′′(θ),

and then we can write the generalized linear model as follows

Y = F(Xβ) + V (Xβ)ζ (6)
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where F ′(·)’is bounded, F(·). The second derivative of is
the δ-order Hölder continuous function, V (·). Is a non-
negative continuous bounded function,ζ obeys an exponential
distribution with mean value of 0 and variance of 1 [17].

This paper discusses the generalized linear model as shown
in Equation (6).

2.2 Elastic-Net Method

The Elastic-Net method is a variable selection method used
to solve strongly-correlated variables based on the Lasso
method. It not only inherits several excellent properties of
the Lasso method; it also deals effectively with strongly-
correlated variables. Therefore, before introducing the
Elastic-Net method, Lasso method is explained.

The Lasso method is a variable selection method proposed
in 1996, which not only can select the variables, but also
obtains parameter estimates.

Consider the following general linear model:

Y = X T β + ζ (7)

Among them, Y = (y1, y2, . . . , y3)
T is the response

variable, n is the sample size, X = (X1, X2, . . . , Xn) is the p-
dimensional prediction variable, Xi = (Xi1, Xi2, . . . , Xin)T ,
i = 1, 2, . . . , n, β = (β1, β2, . . . , βp)

T sparsity, that is, many
coefficients in β1, β2, . . . , βp are zero. ζ = (ζ1, ζ2, . . . , ζn)T

is the normal distribution random error [18], that is, ζ ∼
N(0, σ 2 In). It is assumed that the observed data (yi , xi j ),
i = 1, 2, . . . , n, j = 1, 2, . . . , p have been processed by
central standardization, that is:

1

n

∑
i

yi = 0,
1

n

∑
i

xi j = 0,
1

n

∑
i

x2
i j = 1 (8)

The Lasso method not only inherits the advantages of
traditional methods, but also has an effective algorithm,
namely the least-angle regression algorithm, which makes it
more widely applied and studied in the statistics domain.

2.3 Elastic-Net Method and
Related Properties

For ordinary linear models (9), the Elastic-Net method is
defined as follows:

β ′(Enet) = arg min
β

{‖Y − Xβ‖2 + ω2‖β‖2 + ω1‖β‖1} (9)

Among, ‖β‖2 = ∑p
j=1 β2

j , ‖β‖1 = ∑p
j=1 |β j |.

For the algorithm of Elastic-Net method, as long as the
solution table of Elastic-Net method is transformed to a
solution similar to Lasso method, the solution of the Elastic-
Net method can be obtained by Lars algorithm, which is
expressed as follows by lemma:

Lemma defines a new data set (X∗, Y ∗) for given data
(X, Y ) and fixed parameters (ω1, ω2):

X∗
(n+p)×p = (1 + ω2)

(
X√
ω2 I

)
, Y ∗

(n+p) =
(

Y

0

)
(10)

Let γ = ω1/
√

1 + ω2 and β∗ = √
1 + ω2β, then the

solution of the method is equivalent to the form of the solution
of the following method:

β∗′ = arg min
β∗

⎧⎪⎨
⎪⎩‖Y ∗ − X∗β∗‖2 + γ

p∑
j=1|β∗

j |

⎫⎪⎬
⎪⎭ (11)

Therefore,

β ′(Enet) = 1√
1 + ω2

β∗′ (12)

According to lemma, the algorithm problem of the method
is effectively solved, which lays a foundation for further
study of its properties and popularization and application.
For data with strongly correlated variable groups, a good
variable selection method should be able to select all strongly-
correlated variable groups inside or outside the model, which
is the group effect property of the method [19].

Lemma given data (X, Y ), and parameters (ω1, ω2), (X, Y )

have been processed by central standardization,
so that β ′(ω1, ω2) represents estimation, assuming
β ′

k(ω1, ω2)β
′
1(ω1, ω2) > 0, definition:

Dω1ω2(k, l) = 1

‖Y‖1
|β ′

k(ω1, ω2) − β ′
1(ω1, ω2)| (13)

Therefore,

Dω1ω2(k, l) ≤ 1

ω2

√
2(1 − ρ) (14)

where ρ = x ′
k xl is the sample correlation coefficient. The

lemma gives the group effect property of Elastic-Net method.
Dω1ω2(k, l) represents the difference between the coefficient
paths of two variables k and l. The lemma shows that if xk

and xl are strongly correlated, that is, if ρ = 1 (or when ρ =
−1, −xl is considered), the difference between the coefficient
paths of variables k and l is almost zero [20].

The upper bound of inequality is a quantitative description
of the group effect of the Elastic-Net method. It can be seen
that the Elastic-Net method can effectively deal with the group
of strongly-correlated variables and selects all the groups of
strongly-correlated variables necessary for the model, while
the Lasso method does not have the property of group effect,
and therefore cannot deal effectively with data that have
strongly-correlated variables.

3. APPLICATION OF GENERALIZED
LINEAR MODEL BASED ON
ELASTIC-NET METHOD

3.1 Set-up of Simulated Data

The studied region of space is the side length for the m − 1
unit of distance square, observation point location in the
m × m point on a grid, the horizontal and vertical distance
between each point is a unit of length, with u, v, being
the observation point of abscissa and ordinate respectively,
under which the order of the observation point according
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Figure 1 Broadband = 1, Gaussian weight function.

to the left to right, bottom-up order, i.e. for each u =
0, 1, . . . , m − 1. Make v take 0, 1, . . . , m − 1, the coordinate
(ui , vi ) of the position of the i th observation point is ui = 0.5
mod (i − 1, m), vi = 0.5

[ i−1
m

]
, i = 1, 2, . . . , m2, where

mod (·) is the mod function and · is the integral function. The
generalized geographic weighted regression model is a large
class of models, of which the most commonly used are logical
regression model and Poisson regression model. In order to
facilitate analysis and data simulation, it is advisable to set
the geographic weighted regression model for data simulation
here as the logical geographic weighted regression model, the
expression of which is:

ln

(
pi

1 − pi

)
= 1

6
(ui +vi )+ ln

(
1 + ui + vi

5

)
xi +ζi (15)

In the model, the value of independent variable x is a
random number generated independently and obeying the
uniform distribution on the interval (0,1), and ζ is a random
number obeying the standard normal distribution N (0, 1), take
m = 20. When pi is greater than or equal to 0.5, yi is 1,
otherwise yi is 0. After one simulation, 400 sample points
(xi , yi ) can be obtained, and the obtained data can be used
to estimate the geographically-weighted logistic regression
model.

3.2 Weight Function Selection

To estimate the geographical weighted regression model, we
must first determine the type of weight function in order
to produce the weight Wij (ui , vi ) required for parameter
estimation. The small space weight function includes two
categories; one is the mechanism of fixed weight with constant
bandwidth, and the other is the adaptive weight mechanism
with variable bandwidth. Three bandwidth invariant weight
functions are provided in the spgwr package: the Gaussian
weight function, bisquare kernel weight function and cubic

kernel weight function. A weight function with variable
bandwidth is provided, which is the k nearest neighbor
method. Figures 1–6 show the spatial surface diagram of
the estimated value of model parameter β1 obtained by using
simulated data samples according to different bandwidth and
weight functions.

Figure 1 and Figure 2 both depict Gaussian weight
functions, although the bandwidth is different. Therefore,
it can be seen that the smaller the bandwidth is, the faster the
weight decays with the increase of distance, and the sample
points involved in the estimation of each regression point are
relatively small, which makes the spatial heterogeneity of
the parameter estimation value larger and the spatial surface
map uneven. The larger is the bandwidth, the slower the
weight will decay with the increase in distance, and the sample
points involved in the estimation of each regression point
are relatively large, which makes the spatial heterogeneity
of parameter estimation less and produces the effect of spatial
smoothing, making its spatial surface map smoother. The
other four figures show that the double square kernel weight
function and the k-nearest neighbor method with variable
machine weight mechanism have the same characteristics.
Comparing the graphs of different spatial weight functions,
when the bandwidth is large or small, the spatial surfaces of
their parameter estimates are similar, either smooth or concave
convex. From this, we can conclude that the estimation of
a geographically-weighted generalized linear model is not
very sensitive to the choice of weight function, but it is very
sensitive to the broadband of a specific weight function.

3.3 Model Parameter Estimation

The optimal bandwidth of each different weight function
is obtained. Next, the weight can be calculated according
to the optimal bandwidth to estimate the parameters of the
geographically-weighted logistic regression model. Accord-
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Figure 2 Broadband = 5, Gaussian weight function.

Figure 3 Broadband = 2, double square weight function.

ing to the results of bandwidth optimization, we use Gaussian
weight, double square kernel weight and k-nearest neighbor
method to estimate the parameters.

We estimate the bandwidth of the model and calculate the
optimal value of the software parameters according to the
above language weight function. Figures 7 to 11 are the spatial
surface diagrams of the estimated value of β1 obtained by

different estimation methods, where Figure 7 is the coefficient
1 of the variable x of the equation to obtain the simulation
data, which is taken as β1 = ln

( 1+ui +vi
5

)
. Figure 8 is the

fitting result of geographic weighted logistic regression model
with Gaussian weight function, Figure 9 is the fitting result of
bandwidth regression model obtained by k-nearest neighbor
method, Figure 10 is the fitting result of double square kernel
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Figure 4 Broadband = 5, double square kernel weight function.

Figure 5 Scale = 0.01, k nearest neighbor method.

regression model, and Figure 11 is the fitting result of the
general logistic regression model.

It can be seen from Figure xxx that the general generalized
linear model cannot capture the spatial heterogeneity of spatial
objects. The parameter estimation obtained by it is the average

value of all spatial object parameters and cannot explain the
spatial nonstationary risk of spatial objects. However, in
Figures 8–10, we cannot determine with the naked eye the
model that best fits the original data. Therefore, we need to
test the significance of the regression parameters of the model
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Figure 6 Scale = 0.2, k nearest neighbor method.

Figure 7 Parameter surface of the original simulation equation.

and compare the goodness of fit of the regression model to
select the most appropriate model.

4. EXPERIMENT

The purpose of this section is to investigate whether the better
parameter estimators obtained by the Elastic-Net method can
be used when there is multicollinearity in the generalized
linear model. This section contains a brief description of the
way to generate data, and a discussion of results.

4.1 Experimental Design

An important factor of this paper is the correlation between
independent variables, and the superiority of ridge parameters
is compared by correlation. In order to change the correlation
coefficient conveniently, the following equation is used for
data generation:

xi j = (1 − ρ2)
1
2 zi j + ρzi j (16)

where zi j is generated from the standard normal distribution.
ρ we take the corresponding four values: 0.75, 0.85, 0.95 and
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Figure 8 Geographic weighted estimation of Gaussian weight function.

Figure 9 Geographic weighted estimation of k nearest neighbor method.

0.99. The n observations of the dependent variable are derived
from the Be(Pi ) distribution. Among them:

pi = exp(β1xi1 + β2xi2 + · · · + βl xip)

1 + exp(β1xi1 + β2xi2 + · · · + βl xip)
(17)

We select parameter 1, and the value of β1, β2, . . . βp

satisfies the common constraint
p∑

i=1
β2

i = 1 in simulation

studies and β1 = . . . = βp .

In addition, the other factor we chose was the sample size n,
because increasing the sample size can reduce the variance of
the parameter estimates. In this simulation study, the sample
size n is 50, 100, 150, 200, 250, 300, 350, 400, 450 and 500,
respectively.

Finally, we need to consider the number of independent
variables. Because this factor determines the number of
independent variables that work best with that parameter k,
in this simulation study, the number of independent variables
is 2, 4, and 8.
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Figure 10 Geographic weighted estimation of bisquare kernel weight function.

Figure 11 Global generalized model estimation.

4.2 Experimental Results

4.2.1 Accuracy of Model Data Classification

In order to verify the effectiveness of the proposed model for
model data classification, Hierarchical Bayesian generalized
linear model (Reference [7] method), optimized K-prototypes
clustering generalized linear model (Reference [8] method),
mixed generalized linear model for statistical inference

(Reference [9] method) and mixed generalized linear model
for Elastic-Net (this method), were used to detect the
classification accuracy of model data. The result for model
accuracy are shown in Figure 12.

Figure 12 shows that there are significant differences in the
classification accuracy of model data obtained by different
methods. When the sample size is 50GB, the classification
accuracy of the model data obtained by the method proposed
in this paper is 95%, 76% of the model data in Reference [7],
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Figure 12 Classification accuracy of model data.

73.5% of the model data in Reference [8], and 72.1% of the
model data in Reference [9]. When the sample size is 300GB,
the classification accuracy of model data proposed in this
paper is 98%, 78% of the model data proposed in Reference
[7], 74.8% of the model data proposed in Reference [8] and
74% of the model data proposed in Reference [9]. When the
sample size reaches 550GB, the classification accuracy of the
model data in this paper is 98.3%, 82.5% of the model data
in Reference [7], 85% of the model data in Reference [8] and
76% of the model data in Reference [9]. The proposed method
always has a high classification accuracy of model data under
the above conditions, indicating that the proposed method has
a good classification accuracy of model data.

4.2.2 Recall Rate of Model Data Classification

To verify the effectiveness of our proposed model in terms
of model classification, A hierarchical Bayesian generalized
linear model (Reference [7]), a generalized linear model for
optimized K-prototypes clustering (Reference [8]), a mixed
generalized linear model for statistical inference (Reference
[9]), and a mixed generalized linear model for Elastic-Net
(this method) were used to detect the recall rate of type DATA
classification. The recall rate results are shown in Figure 13.

The analysis of Figure 5 shows that there are great
differences in the recall rates of model data classification
under different methods. When the sample size is 100GB,
the classification recall rate of the model data obtained by
the proposed method is 97%, 77.6% of the model data in
Reference [7], 78% of the model data in Reference [8] and
82.5% of the model data in Reference [9]. When the sample
size is 300GB, the classification recall rate of model data in
this method is 98%, 77.5% of model data in Reference [7],
78.2% of model data in Reference [8] and 79.8% of model
data in Reference [9]. When the sample size is 550GB, the
classification recall rate of the model data in this paper is

98.2%, 78% of the model data in Reference [7], 83% of the
model data in Reference [8] and 82% of the model data in
Reference [9]. The proposed method always has a high recall
rate of model data classification, which effectively verifies
the effectiveness of the proposed method in generalized linear
models.

4.2.3 Time Taken to Classify Model Data

In order to verify the efficiency of the model in the process
of model classification, The hierarchical Bayesian general-
ized linear model (Reference [7]), optimized K-prototypes
clustering generalized linear model (Reference [8]), mixed
generalized linear model for statistical inference (Reference
[9]), and mixed generalized linear model for Elastic-Net
(this method) were used to select time series for model data
classification. The time result is shown in Figure 14.

Figure 14 shows that the classification time of model data
varies according to the different methods applied. When the
sample size is 50GB, the model data classification time of the
method proposed in this paper is 0.8s, 5.2s for the method
in Reference [7], 9s for the method in Reference [8] and 11s
for the method in Reference [9]. When the sample size is
200GB, the model data classification time of this method is
1.2s, that of the method in Reference [7] is 9s, that of the
method in Reference [8] is 13.2s, and that of the method in
Reference [9] is 18s. When the sample size is 550GB, the
model data classification time of the method in this paper
is 3.2s, the model data classification time of the method in
Reference [7] is 30s, the model data classification time of
the method in Reference [8] is 21.6s, and the model data
classification time of the method in Reference [9] is 28s. The
model data classification time of the proposed method is much
lower than that of other methods, indicating that the model
data classification effect of the proposed method is better.
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Figure 13 Recall rate of model data classification.

Figure 14 Model data classification time.

5. CONCLUSION

This paper proposes a generalized linear model optimization
method based on the Elastic-Net method. It presents the
structure of the general linear model and the generalized linear
model, analyzes Elastic-Net method and its related properties,
incorporates Elastic-Net method into the generalized linear
model, and analyzes the classification effect of the model by
means of examples. The experimental results show that:

(1) When the sample size reaches 550GB, the model data
classification accuracy of the proposed method is 98.3%.
Under this condition, the proposed method always has a
high classification accuracy of model data, indicating that

the model data classification accuracy of the proposed
method is good.

(2) When the sample size is 550GB, the model data
classification recall rate of the proposed method is
98.2%. The proposed method always has a high
model data classification recall rate, which confirms the
effectiveness of the proposed method in the generalized
linear model.

(3) When the sample size is 550GB, the model data
classification time of the proposed method is 3.2s,
indicating that the model data classification effect of the
proposed method is good.
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