
Eng Int Syst (2023) 5: 379–387
© 2023 CRL Publishing Ltd Engineering

Intelligent Systems

Key Technology Research on
End-Side Arithmetic Network
Based on Resource Virtualization
for Multi-Terminal Systems

Fang Cui, Mao Ni∗, Ting Zhou and Hengjiang Wang

China Mobile Group Device Co., Ltd., Beijing 100053, China

As technology continues to advance, intelligent terminal hardware has broken through technical and application barriers and is affecting traditional
industries such as healthcare, logistics and energy in a variety of product forms, resulting in the rapid development of multi-terminal collaborative
systems. The key technology of the end-side arithmetic network under this system has become the key to the improvement of terminal network resource
utilisation. This study first optimises the virtual resource scheduling in the multi-terminal system by designing a VM migration algorithm based on
the minimum load imbalance, and then proposes a self-coded data compression algorithm, which introduces feature reconstruction and a XGBoost
classification model. Finally, simulation experiments are conducted on the proposed two methods. The outcomes demonstrate that by applying the
proposed VM migration algorithm, the I/O, Memory and CPU load imbalance are lower than 0.1, 0.2 and 0.3 respectively, improving the resource
utilization. With the proposed data compression algorithm, the classification precision of data compression reaches up to 91% and the running time
is reduced by up to 82%, greatly improving the data compression efficiency and providing a new method reference for resource scheduling in end to
end computing power networks.

Keywords: Multi-terminal; Resource virtualization; End-side arithmetic networks; Data compression; VM migration

1. INTRODUCTION

With the continuous expansion of the scale of the intel-
ligent terminal industry, the intelligent transformation of
non-intelligent devices and the information construction
of traditional industries have gradually become the focus
of widespread social attention, and intelligent information
processing technologies for terminals and networks are in
urgent need of further development [1]. Given the increase
in end-side computing power, edge computing and chip
technology have taken on a large number of computing tasks,
requiring an enormous amount of computing power. As a
vital element of AI and the digital economy, computing power

∗E-mail: nimaoch@163.com

plays a vital role in the processing of data in various industries
[2]. The current terminal device is comparable to a sensor;
i.e., it transmits captured data to the terminal for processing,
which leads to low utilization of end-side and cloud computing
power and intensifies the discrepancy between supply and
demand. Hence, end-side computing power technology has
gradually become an increasingly important aspect of the
computing power domain. With the booming development of
end-side arithmetic technology in China, the terminal ecology
is becoming more and more active, the scale of devices is
huge, and multi-terminal systems have become mainstream
[3]. However, this situation has also increased the difficulty
of and the time required for the unified nano-management
of devices. Therefore, this study is aimed at optimising key

vol 31 no 5 Sept 2023 379

KEY TECHNOLOGY RESEARCH ON END-SIDE ARITHMETIC NETWORK BASED ON RESOURCE VIRTUALIZATION FOR MULTI-TERMINAL SYSTEMS

end-side arithmetic network technologies for multi-terminal
systems in terms of virtual resource scheduling and data
compression, with a view to providing technical support for
the further development of smart terminals.

2. RELATED WORKS

In recent years, multi-terminal systems have developed
rapidly and resource virtualization has become mainstream.
Therefore, research on end-side computing networks has
received extensive attention from many professionals, and a
series of breakthroughs have been achieved. Researchers such
as Wang [4] proposed edge computing technology in order
to solve the huge pressure that data collection, transmission
and computation in distribution IoT networks put on the
communication channel and the storage and computation
system of the master station, and the deployment of an
edge computing platform. Wang’s study demonstrates that
the approach is more effective for network lightweight data
processing. Sodhro et al. [5] addressed the problem of
wireless channel fluctuations that degrade the performance of
the entire network system. They implemented a new QoS
optimisation strategy at V2V for multimedia transmission
on an IoT-based edge computing platform. They used
QoS metrics to analyse the performance of V2V networks.
The outcomes demonstrate that the algorithm outperforms
traditional techniques and is a potential candidate for V2V
multimedia transmission on adaptive edge computing plat-
forms. On the other hand, Wang et al. [5] addressed a
problem common to traditional encryption-based techniques:
these techniques are extremely demanding on the memory
and computing power of network end-users. Wang et al.
proposed an efficient proxy re-encryption approach used in
the ICN framework of information-centric networks to help
reduce encryption time. The study [6] demonstrates that the
method is more efficient in terms of computational overhead
and computational power. It is demonstrated that the method
has good performance in terms of computational overhead and
communication complexity. Wang C. [7] and other experts
proposed a resource scheduling algorithm (GATS) based on
a hybrid genetic algorithm and taboo search to address the
problem that existing scheduling methods are barely able
to meet the demand for low-latency mobile communication,
and establish a dynamic bandwidth allocation strategy for
virtual links using integer linear programming. Simulation
outcomes demonstrate that the scheduling completion time
of this algorithm is reduced by 17%, which can meet
the 5G services with strict delay requirements. Qi et al.
addressed the problem of low message delivery rate in deep
space communication networks due to high latency and
frequent topology switching. They proposed an improved
algorithm that uses a flexible load balancing strategy to
establish the relationship between the optimal threshold and
the reliability of network performance. The simulation
outcomes demonstrate that the algorithm effectively improves
the network throughput and message delivery rate. It also
reduces the bandwidth rejection rate by about 4.7%, which
can better balance the impact of spatial communication
network topology updates and resource consumption [8].

Ra et al. [9] proposed an adaptive scheduling algorithm based
on a combined auction allocation mechanism with dynamic
pricing to address the inefficiency of scheduling algorithms for
cloud resources in order to categorise various virtual machine
(VM) requests. The results of the simulations demonstrate
that the method can significantly improve provider profit and
the utilisation of allocated resources utilization.

Zhang et al. [10] proposed a Phasor Principal Component
Analysis (PPCA) method in the complex domain to compress
the simultaneous phases as a whole, in response to the
problem that the existing eigenvalue-based criterion is not
suitable for data compression. Furthermore, the proposed
PPCA is enhanced by an iteration-based process to reduce
the computation of PPCA. Experiments demonstrated that the
method achieves higher compression ratios, better precision
of reconstructed data, and improved real-time performance,
as well as significantly reducing the computational effort
required. Xia et al. [11] proposed an Absolute Moment Block
Truncation Coding (AMBTC) compression technique and Re-
versible Data Hiding (RDH) method based on Hoffman coding
for compressing raw grey-scale image data. Experimental
outcomes demonstrate that this scheme has better hiding load
compared to other methods,as well as acceptable image visual
quality. Karthikeyan et al. [12] proposed and analysed
an energy-efficient data compression and data aggregation
algorithm, and also suggested a novel feedback mechanism for
sensor data compression. A secure data aggregation algorithm
is used for data aggregation to avoid additional transmission
and computational overhead on sensor nodes to reduce the
energy consumed by the network. Experimental outcomes
demonstrate that the algorithm extends the lifetime of the
whole network by 24%. Yang J et al. [13] proposed a
probabilistic prediction model for neural networks based on
the maximum entropy principle of textual information in order
to optimise the efficiency of massive data transmission in
practice. The model combines an optimised Hoffman coding
algorithm to optimise the entire process from data exchange
to data compression, transmission and decompression. The
outcomes demonstrate that the algorithm optimises the data
compression transmission algorithm to achieve effective data
compression Research experts such as Zhao [14] introduced a
gating mechanism and proposed a gated neural network based
on the idea that linguistic data features such as lexical tags
and dependency tags contribute to compression generation.
They demonstrated that the proposed method achieves better
compression performance in both automatic metrics and man-
ual evaluation compared to previous competing compression
methods Chen et al. [15] proposed an efficient parallel
memory compression framework in order to reduce memory
requirements and address the problem of time-consuming
execution of encoding and decoding leading to a severe
slowing down in the training of Deep Neutral Networks
(DNNs). Experiments demonstrate that this framework can
reduce the memory footprint during training by an average of
2.3 times without loss of precision, achieving a 2.2 times data
compression ratio.

In summary, genetic algorithms and other applications have
achieved good outcomes for virtual resource scheduling in
multi-terminal systems. At the same time, data compression
techniques including neural networks have performed well in

380 Engineering Intelligent Systems

M. NI ET AL.

Figure 1 PM virtualisation diagram.

end-side arithmetic networks in terms of coping with the vast
amounts of complex data being generated today. Therefore,
this current study aims to optimise the virtual resource
scheduling and data compression techniques in multi-terminal
systems to further improve end-side arithmetic utilisation.

3. KEY TECHNOLOGIES FOR END-SIDE
COMPUTING NETWORKS BASED ON
RESOURCE VIRTUALISATION FOR
MULTI-TERMINAL SYSTEMS

3.1 Optimization of Resource Virtualization
Scheduling for Multi-Terminal Systems

An important feature of end-side computing networks is the
processing of a task in concert with multiple end systems.
Due to the differences in the hardware of various end
devices, the abstraction of hardware capabilities is a necessary
step towards improving efficiency, which is the main role
of resource virtualisation [16]. Resource virtualisation
enables different devices in a multi-terminal system to share
the hardware capacity by creating a virtualised pool of
resources, which overcomes the processing power deficit of
a single terminal device. At the same time, the end-side
arithmetic network can be matched to execution terminals
with capabilities commensurate with user characteristics
when faced with different services. The resultant change
is that services flow seamlessly through the multi-terminal
system; moreover, the combined capabilities of multiple
devices including camera capabilities, display capabilities
and sensor capabilities, are fully utilised [17]. When the
user is operating, there may be a change in usage scenario
that makes it difficult for the current device to meet the
requirements of certain tasks, or the environment contains
devices that are more suitable for processing [18]. In this case,
the user can process the current task on the new device and
achieve a better user experience, a process known as ‘cross-
terminology’. Also, cloud terminals allow multi-terminal
systems to work better with the cloud edge. Because it
is a terminal processed through the virtual resources of the
cloud, the cloud terminal enables the interoperability of virtual
resources between the cloud and the terminal, which is highly
advantageous in terms of utilising virtual resources. By

means of virtualisation technology, resources such as storage,
networks and servers form virtual clusters, so users are able
to have pools of virtualised resources, which is achieved
through virtual machines (VMs). A physical machine (PM)
virtualisation is illustrated in Fig 1.

In order to achieve load balancing and improve the quality
of information services in multi-terminal systems, VMs need
to be migrated from one PM to another in a timely manner, i.e.,
VM migration, which is an important aspect of virtual resource
scheduling. The essence of VM migration is the migration
of virtual resources, which is manifested as the migration
of storage, computing and network resources [19]. The
resource scheduling objective of VM migration is mainly load
balancing, achieved by means of the multi-objective genetic
algorithm. The purpose of VM migration is to ensure load
balancing, Hence, this research introduces a multi-objective
genetic algorithm in order to reduce the load imbalance as
much as possible, and basing the VM on minimum load
imbalance (MLI-VM). The multi-objective genetic algorithm
is developed from the traditional genetic algorithm and is
capable of solving multiple objective functions optimally,
which is highly advantageous in handling multi-objective
optimisation problems. The MLI-VM algorithm is based on
the principle of multi-objective optimisation for the selection
of the target PM, while the VM migration is not a mechanical
migration of the current VM image file, but also a migration
of peripherals, virtual runtime environment, etc. The VM
migration process cannot be separated from the replication
of the VM state, which inevitably produces a migration cost.
The migration cost varies across VMs, and to quantify the
migration cost, equation (1) is used.

Pi = Mi · μmi

μmi + μci
(1)

In equation (1), Pi represents the migration cost, μmi is
the memory utilisation, μci is the physical CPU utilisation
and Mi is the memory size. Therefore, the migration cost
for a load-specific VM is directly affected by the amount of
memory used. In order to achieve better migration and to
ensure stable and reliable operation before and after migration,
the minimum amount of memory migration must be one of
the principles. In order to improve PM resource utilisation,
VM migration must also follow complementary resource
guidelines and take maximum account of the corresponding
load imbalance during the migration process. Therefore,

vol 31 no 5 Sept 2023 381

KEY TECHNOLOGY RESEARCH ON END-SIDE ARITHMETIC NETWORK BASED ON RESOURCE VIRTUALIZATION FOR MULTI-TERMINAL SYSTEMS

Figure 2 MLI-VM algorithm for target server selection process.

this study defines three dimensions for the proposed MLI-
VM algorithm. The CPU load imbalance is demonstrated in
equation (2).

rc =
√√√√ 1

N

N∑
i=1

(ai − Ec)2 (2)

In equation (2), rc represents the CPU load imbalance, N
represents the number of PMs, μmi is the CPU load of the
i th PM, and Ec represents the average CPU load. The load
imbalance of Memory is demonstrated in equation (3).

rm =
√√√√ 1

N

N∑
i=1

(bi − Em)2 (3)

In equation (3), Em is the Memory load average, which
is equal to 1

N

∑N
i=1 bi and rm represents the Memory load

imbalance. The I/O load imbalance is demonstrated in
equation (3).

ri/o =
√√√√ 1

N

N∑
i=1

(ci − Ei/o)2 (4)

In Eq. (4), ri/o is the I/O load imbalance and Ei/o represents
the average I/O load value. Therefore, the target PM selection
model based on the MLI-VM algorithm is demonstrated in
Eq. (5). ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ri/o =
√

1
N

∑N
i=1(ci − Ei/o)2

rm =
√

1
N

∑N
i=1(bi − Em)2

rc =
√

1
N

∑N
i=1(ai − Ec)2

min{ri/o, rm , rc}
x = {v1, v2, . . . , vk}, vi ∈ {1, 2, . . . , N}

(5)

In Eq. (5), vi represents the target PM number to be
migrated, k represents the number of VMs to be migrated,
and x represents the target PM number of all VMs, i.e.
the VM migration solution. The MLI-VM algorithm solves
Eq. (5) by a multi-objective genetic algorithm, which first
uses the I/O load imbalance, Memory load imbalance and
CPU load imbalance as the fitness functions, and the joint

objective function The optimization is a population evolution
process, and the three load imbalances correspond to the
fitness functions of subgroup 1, subgroup 2 and subgroup 3
respectively. The three load imbalances correspond to the
fitness functions of subpopulation 1, subpopulation 2 and
subpopulation 3 respectively. For the three subpopulations
corresponding to the three objective functions, the fitness of
the individuals of the population is jointly found, while the
selection operation is executed by the random competitive
selection method. After the previous step, the three
subpopulations are merged to form a single population and the
next step of evolution is performed. In the selection operation,
the execution is based on the relative fitness of individuals,
which is obtained with equation (6).

P(xi) = f (xi)∑M
j=1 f (xi)

(6)

In equation (6), M is the number of individuals in the
subpopulation, P(xi) represents the relative fitness and f (xi)

is the fitness of the individual. The greater the fitness
of an individual, the higher the probability of selection,
and conversely, the lower the relative fitness, the greater is
the probability that an individual will be eliminated. The
crossover operator of the algorithm is uniform crossover,
which is used to perform genetic recombination, and the
mutation probability is 0.001 ≤ pm ≤ 0.1, which is used to
perform genetic mutation. The flow of the MLI-VM algorithm
for target server selection is demonstrated in Fig 2.

4. END-SIDE ARITHMETIC NETWORK
TECHNOLOGY BASED ON DATA
COMPRESSION

Data compression is a key technology used for the low latency
transmission of data in end-to-end arithmetic network multi-
terminal systems as it removes redundant data features from
large volumes of data. Data compression is used when storing
information, mainly by removing redundant data that requires
additional encoding, thus achieving a reduction in data volume
[20]. When processing signals, data compression is the

382 Engineering Intelligent Systems

M. NI ET AL.

Figure 3 Basic structure of the proposed self-coded data compression process.

process of encoding information by means of fewer data bits
than the original data. In general, the device that compresses
the data is the encoder, and the decoder decompresses that
data. In data transmission, the source encoding is encoded
at the data source and the whole process needs to deal with
the complexities of time and space [21]. In this study, a self-
coding data compression algorithm is designed,which is able
to collect data from the sensor receiver, build a self-coding
model based on the input data, and compress large scale data
sets using a coding and decoding network, thus improving
data processing efficiency. The basic structure of the proposed
self-encoding data compression process is shown in Fig 3.

In Fig 3, layers L1 to L2 are the encoding process
of the proposed self-encoding data compression method,
while the decoding process is from layers L2 to L3. The
encoding function and decoding function are demonstrated in
equation (7). {

h = f (x) = S f (h A,b(x))

y = g(x) = Sg(h A,p(h))
(7)

In equation (7), h is the output layer expression, A is the
mapping weight matrix between the L1 and L2 layers, A is
the mapping weight matrix between the L2 and L3 layers,
and A is the transpose matrix of A. f is the hidden layer
expression. In constructing this data compression model,
the study implemented training operations through the codec
network to obtain the initial values of A in the neural network.
S f (x) denotes the activation function of the encoder and
Sg is the decoder activation function, using the Sigmoid
function. A greater similarity between the output and input
data than a given threshold means that the decoder-encoder
network is able to retain most of the feature information in the
original input data. The reconstruction error obtained with the
Sigmoid function as the activation function is demonstrated
in equation (8).

L(x, y) =
n∑

i=1

[(1 − xi) log(1 − yi) + xi log yi] (8)

In equation (8), L represents the reconstruction error. The
collective loss of the original input data training is calculated
with Eq. (9).

J (θ) =
∑
x∈S

L[(x, g)g(f (x))] (9)

In equation (9), J represents the collective loss outcome, S
represents the original input data set, and θ is the parameter.
The iterative training operation is then performed by the
codec algorithm to obtain the minimum model parameters
of the loss functionJ (θ), and the model is built. Since self-
encoding data compression tends to reduce the precision,
feature reconstruction is added to optimise the model. Feature
reconstruction enables the conversion of the original data
to a real matrix and, as a feature engineering technique,
the conversion of the original data bit feature vectors is the
purpose of the technique [22]. Feature reconstruction is an
operation performed on the input data, which is then feature-
compressed by self-encoding data compression to achieve
a reduction in data size. The compression method which
includes feature reconstruction is depicted in Figure 4.

After the data has been compressed, it is classified
using the XGBoost classification model, which performs
the classification of the compressed outcomes by means of
integration trees. Let the compressed data in the compressed
dataset be n and the number of attribute features be p,
denoted as {(yi , Xi)}n

i=1. The integration tree construction is
based on the regression tree, which performs the classification
operation of yi as demonstrated in equation (10).

ŷi =
M∑

m=1

fm(Xi) (10)

In equation (10), fm denotes the expression of the function
corresponding to the mth regression tree, as demonstrated in
equation (11).

fm(Xi) =
T∑

j=1

I [q(Xi)]w j (11)

In equation (11), q(Xi) is the regression tree classification
rule, T is the number of leaf nodes, I (.) represents the
schematic function, and w j is the output value of the j leaf
node. The objective function is defined as demonstrated in
equation (12).

L =
∑

k

�(fk) +
∑

i

l(ŷ, yi) (12)

In equation (12), �(fk) represents the regular term and
l(ŷ, yi) represents the loss function. The compressed data

vol 31 no 5 Sept 2023 383

KEY TECHNOLOGY RESEARCH ON END-SIDE ARITHMETIC NETWORK BASED ON RESOURCE VIRTUALIZATION FOR MULTI-TERMINAL SYSTEMS

Figure 4 Self-coding data compression method including feature reconstruction.

Table 1 MLI-VM algorithm experimental simulation parameters.

Parameter Description Values

pc Crossover probability 0.6
pm Cross mutation probability 0.05
Q Reservation evolution algebra 20
p Binary code digits 7
k Number of VMs to be migrated 3:1:7
k0 Load level critical point 6
M Individual number of Subpopulation 9
N Number of PMs 65

model reduces the estimation error by adding a new regression
tree, and the incoming objective function is demonstrated in
Eq. (13) for a number of iterations of t

L(t) =
n∑

i=1

l(ft (Xi) + yi + ŷi (t − 1)) + �(ft) (13)

A second order Taylor expansion is performed on equa-
tion (13) at ŷ(t−1)

i and is defined as demonstrated in
equation (14).

L(t) ∼=
n∑

i=1

[
1

2
hi f 2

t (Xi) + gi ft (Xi)

]
+ �(ft) (14)

In equation (14), gi represents the first order derivative and
hi is the second order derivative. The second-order Taylor
expansion speeds up the optimisation of the objective function.
As a classification rule and regression tree structure q(Xi), the
compressed dataset defined as I j on the classification to leaf
nodes, and the objective function value and optimal weights
obtained when the number of iterations is t are demonstrated
in Eq. (15).

L
(t)

(q) = −1

2

T∑
j=1

(∑
i∈I j

gi

)
∑

i∈I j
hi + λ

+ λT (15)

Finally, the minimum value of L
(t)

(q) is obtained using
the optimal q(·), and the next iteration is executed directly

after the t iteration until the stopping condition is met; the
classification of the compressed outcomes is performed by
the XGBoost model.

5. EFFECTIVENESS OF END-SIDE
ARITHMETIC NETWORK
TECHNOLOGY APPLICATION
UNDER RESOURCE
VIRTUALISATION

5.1 Virtual Resource Scheduling Outcomes

This study analyses the application effects of end-side
arithmetic networks using resource virtualisation in multi-
terminal systems, starting with the validation of the migration
effects of the proposed MLI-VM algorithm. The simulation
environment for this part of the experiment is MATLAB,
and the genetic algorithm toolbox is also employed. The
simulation parameters of the experimental procedure are given
in Table 1.

Fig 5 demonstrates the outcomes of I/O, Memory and CPU
load imbalance before and after migration using the MLI-
VM algorithm. Fig 5 (a), (b) and (c) show the change
curves of I/O, Memory and CPU load imbalance before and
after migration respectively. Note that in Fig 5(a), before
migration, the I/O load imbalance is stable at 0.15, while after

384 Engineering Intelligent Systems

M. NI ET AL.

Figure 5 I/O, Memory and CPU load imbalance outcomes before and after migration using the MLI-VM algorithm.

Figure 6 Comparison of migration effect and running time between MLI-VM migration algorithm and enumeration algorithm.

migration by the MLI-VM algorithm, the I/O load imbalance
is highest at migration number 3, which is 0.1, and then as
the migration number increases to 8, the I/O load imbalance
tends to decrease and then increase, although all of them are
below 0.1. As shown in Fig 5(b), the Memory load imbalance
is 0.24 before migration and stays below 0.2 after migration,
with the lowest being 0.1. In Fig 5(c), the CPU load imbalance
is 0.35 before migration, and the highest value is 0.3 and the
lowest is 0.2 after migration. After migration, the PM resource
imbalance is significantly reduced and the resource utilisation
is improved.

The results obtained with the MLI-VM migration algorithm
are then compared with those of the enumeration algorithm.
For comparison, the migration effects and running times
are given in Fig 6. Fig 6(a) allows a comparison of the
average imbalance outcomes between the MLI-VM migration
algorithm and the enumeration algorithm, while Fig 6(b)
shows the execution time achieved by each of the two methods.
As seen in Fig 6(a), the average imbalance obtained by
the enumeration method reaches its maximum value of 0.31
when the number of migrations is 1, and the lowest value
is at the number of migrations is 5, but it is always above
0.1. The mean imbalance curve of the MLI-VM migration
algorithm is always below that of the enumeration method,
with a maximum value of 0.28 and a minimum value of 0.1,

indicating that this method is able to use the global search of
the multi-objective genetic algorithm to obtain an approximate
= optimal solution, and outperforms the enumeration method.
Fig 6(b) shows the difference between the two methods is
greater in terms of execution time. The enumeration algorithm
takes more time (up to 36s) as the number of migrations
increases, while the execution time of the MLI-VM algorithm
is always lower than that of the enumeration algorithm, with a
maximum value of 23s, which is lower than the lowest value
of the enumeration algorithm, indicating that the method has
greater execution efficiency and performance.

5.2 Effectiveness of Self-Encoding Data
Compression and Classification

This study proposes a self coding data compression method
that combines the XGBoost classification model with the
XGBoost classification model to achieve better compression
and classification results. In this part of the experiment, the
application effect of the proposed Self-Coding Compression
based on Feature Rconstruction-XGBoost (FRSC-XGBoost)
is analysed. The dataset was obtained from a multi-terminal
system; its basic information is given in Table 1.

vol 31 no 5 Sept 2023 385

KEY TECHNOLOGY RESEARCH ON END-SIDE ARITHMETIC NETWORK BASED ON RESOURCE VIRTUALIZATION FOR MULTI-TERMINAL SYSTEMS

A B C D E F G H I J

90
95

85
80
75

70

65

60

55

95
100

90
85
80

75
70

65

60

A
cc

ur
ac

y(
%

)

(a) Dataset 1 (b) Dataset 2
Size Strip

A
cc

ur
ac

y(
%

)

XGBoost SC-XGBoost

Size Strip

FRSC-XGBoost

XGBoost SC-XGBoost

FRSC-XGBoost

Figure 7 Comparison of operation precision of three methods applied to two datasets.

Figure 8 Comparison of running time of three methods in two selected data sets.

Dataset 1 Size (strip) Dataset 2 Size (strip)

A 8000 F 5000
B 15000 G 9000
C 22,000 H 13000
D 29000 I 17000
E 36000 J 21000

The FRSC-XGBoost method proposed in this study was
compared with the XGBoost and Self Coding Compression-
XGBoost (SC-XGBoost) methods, and the running accuracies
for the two datasets are shown in Fig 7. Fig 7 (a) and (b)
give the running precision results of the three methods for
dataset 1 and dataset 2 respectively. Fig 7(a) shows that the
precision of the XGBoost and SC-XGBoost methods applied
to dataset 1 generally tend to increase, with the highest values
of the two being 65% and 71% respectively, a difference of
6%. However, the compression precision obtained by the
FRSC-XGBoost method is always greater than that of the
first two methods, with the maximum value close to 90%.
Fig 7(b) shows that the precision of the XGBoost method
applied to dataset 2 is still low, and increases as the number
of data entries increases, but not by much, with a maximum
value of around 70%. The difference in precision between the
SC-XGBoost method and FRSC-XGBoost is smaller, but the
proposed FRSC-XGBoost method still outperforms the first
two methods, reaching a maximum precision rate of 91%.

For comparison, Fig 8 gives the runtimes of the three
methods for the two selected datasets. The horizontal
coordinates in Fig 8 are the data sizes with different numbers
of entries, and the vertical coordinates represent the running
times in ms. As indicated by Fig 8(a), the running times

under the XGBoost method reach up to 20 × 104 ms, the SC-
XGBoost method reaches over 5 × 104 ms, and the FRSC-
XGBoost method tops out at about 3.5 × 104 ms, which is
an improvement of 82% and 30% respectively compared to
the first two methods. According to Fig 8(b), the XGBoost
and SC-XGBoost methods have a maximum runtime of
3 × 104 ms and 8 × 104 ms, respectively, while the FRSC-
XGBoost method has a maximum of 2 × 104 ms, which is an
improvement of 75% and 33%, respectively, demonstrating
greater efficiency and requiring a much lower classification
time to compress the data.

6. CONCLUSION

The rapid development of smart services, digital twins and
other services has given rise to more stringent requirements for
intelligent information processing in terminals and networks.
This has meant that key technologies for end-side arithmetic
networks are in urgent need of development and updating.
This study proposes a VM migration algorithm based on
minimum load imbalance for scheduling virtual resources in
multi-terminal systems, and introduces multi-objective ge-
netic algorithms into it for the optimal solution of the objective
function. Subsequently, a self-encoding data compression
algorithm is proposed for the problem of processing massive
environmental data in end-side arithmetic networks. With
the proposed method, large-scale data sets are compressed
by coding and decoding networks, while combining feature
reconstruction and XGBoost classification models to optimise
the compression effect. The outcomes demonstrate that before

386 Engineering Intelligent Systems

M. NI ET AL.

the migration of the MLI-VM algorithm, the I/O, Memory and
CPU load imbalances were 0.15, 0.24 and 0.35 respectively;
after the migration, the highest were all reduced by about
0.1. Compared with the enumeration method, this method
requires an execution time of only 23s at most, which is more
efficient. Meanwhile, the proposed FRSC-XGBoost method
performs compressed classification in data sets collected
from multi-terminal systems with close to 90% accuracy in
both cases, and a running time of up to 3.5 × 104 ms and
2 × 104 ms respectively, which demonstrates much more
efficient execution. However, the study has designed the data
compression method in such a way that the pre-processing of
the data collection may affect the integrity of the data features,
and therefore further optimisation is needed to improve the
precision.

REFERENCES

1. Chien H. T., Lin Y. D., Lai C. L., & Wang C. T. (2020). End-
to-End slicing with optimized communication and computing
resource allocation in multi-tenant 5G systems. IEEE Transac-
tions on Vehicular Technology, 69(2):2079–2091.

2. Lu X., Ni Q., Zhao D., Cheng W., & Zhang H. (2019). Resource
virtualization for customized delay-bounded QoS provisioning
in uplink VMIMO-SC-FDMA systems. IEEE Transactions on
Communications, 67(4):2951–2967.

3. Lv P., Pan S., Xu J. (2020). WiFi-Based virtual access network
scheduling for downlink traffic dominated smart spaces. Mobile
Information Systems, 2020: 8848558.

4. Wang Y., Cai D., Nian Y. (2020). Study of QoS-aware
reliability transmission methods for edge computing networks
in power distribution IoT. Journal of Physics: Conference
Series, 1650(3):32112–32119.

5. Sodhro A. H., Obaidat M. S., Abbasi Q. H., Pace P., &
Qaraqe M. (2019). Quality of service optimization in an
IoT-Driven intelligent transportation system. IEEE Wireless
Communications, 26(6):10–17.

6. Wang Q., Li W., Qin Z. (2019) Proxy re-encryption in
access control framework of information-centric networks.
IEEE Access, 7:48417–48429.

7. Wang C., Tang H., You W., Wang X., & Yuan Q. (2018).
A resource scheduling algorithm with low latency for 5G
networks. Hsi-An Chiao Tung Ta Hsueh/Journal of Xi’an
Jiaotong University, 52(4):117–124.

8. Qi Y., Yang L., Pan C., & Li H. (2020). CGR-QV: A virtual
topology DTN routing algorithm based on queue scheduling.
China Communications, 17(7):113–123.

9. Ra A., Kk B. (2021). Resource allocation using dynamic pricing
auction mechanism for supporting emergency demands in Cloud

computing. Journal of Parallel and Distributed Computing,
158:213–226.

10. Zhang F. et al (2021). A synchrophasor data compression
technique with iteration-enhanced phasor principal component
analysis. IEEE Transactions on Smart Grid, 12(3):2365–2377.

11. Xia T. T., Lin J., Chang C. C., & Lu T. C. (2020). Reversible data
hiding scheme based on the AMBTC compression technique
and Huffman coding. International Journal of Computational
Science and Engineering, 22(4):383–393.

12. Karthikeyan B., Kumar R., Inabathini S. R. (2018). Energy
efficient data compression and aggregation technique for
wireless sensor networks [TELOSB MOTES]. International
Journal of Reasoning-based Intelligent Systems, 10:219–223.

13. Yang J., Zhang Z., Zhang N., Li M., & Zhang Y. (2019).
Vehicle text data compression and transmission method based
on maximum entropy neural network and optimized Huffman
encoding algorithms. Complexity, 2019(4):5–9.

14. Zhao Y., Shen X., Senuma H., & Aizawa A. (2018). A
comprehensive study: Sentence compression with linguistic
knowledge-enhanced gated neural network. Data & Knowledge
Engineering, 117:307–318.

15. Chen Z., Yang S., Liu C., Hu Y., Li K., & Li K. (2022). EPMC:
efficient parallel memory compression in deep neural network
training. Neural Computing & Applications, 34(1):757–769.

16. Borova M., Prauzek M., Konecny J., & Gaiova K. (2019).
Environmental WSN edge computing concept by wavelet trans-
form data compression in a sensor node. IFAC-PapersOnLine,
52(27):246–251.

17. Qin M., Chen L., Zhao N., Chen Y., & Wei G. (2020).
Computing and relaying: Utilizing mobile edge computing
for P2P communications. IEEE Transactions on Vehicular
Technology, 69(2): 1582–1594.

18. Du J., Yu F. R., Chu X. (2018). Computation offloading and
resource allocation in vehicular networks based on dual-side
cost minimization. IEEE Transactions on Vehicular Technology,
68(2): 1079–1092.

19. Liu L., Chen C., Pei Q. (2021). Vehicular edge computing
and networking: A survey. Mobile Networks and Applications,
26(3): 1145–1168.

20. Cappello F., Di S., Li S. (2019). Use cases of lossy compression
for floating-point data in scientific data sets. The International
Journal of High-Performance Computing Applications, 33(6):
1201–1220.

21. Wang X., Liu J., Wang Y., Chen X. & Chen L. (2020). Efficient
tag grouping via collision reconciliation and data compression.
IEEE Transactions on Mobile Computing, 20(5): 1817–1831.

22. Adedeji K. B. (2020). Performance evaluation of data compres-
sion algorithms for IOT-based smart water network management
applications. Journal of Applied Science & Process Engineer-
ing, 7(2): 554–563.

vol 31 no 5 Sept 2023 387

