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Electric power technology has made a vital contribution to the development of today’s society, and electrical equipment also occupies a very important
position in railway operations. Since electrical equipment is very dangerous, with the improvement of living standards, people are paying increasing
attention to the safety of such equipment. Frequent failure of power equipment can have serious consequences. Therefore, the important problem that
needs to be addressed is how to effectively diagnose and prevent faults in railway power equipment. For this problem, the method of comprehensive
feature quantity analysis can diagnose the fault of power equipment in time and effectively prevent the occurrence of the fault. Compared with the
traditional fault diagnosis and prevention methods of railway power equipment, comprehensive feature quantity analysis mainly analyzed the causes
of different types of faults and found out the corresponding internal components of the equipment for troubleshooting. The various types of causes
were classified intelligently, and then these feature quantities were converted into data using computer algorithms to find similar variables. Lastly,
the final preventive plan was obtained through model deduction. In this paper, an artificial neural network is used for data mining and analysis, and
comprehensive feature quantities are examined to detect various indicators of the functioning of electrical equipment in a railway system, in order to
diagnose and prevent power equipment faults. The effectiveness of the fault identification and the performance of the system were tested. It can be
seen from the test results that when the load level was 80% and the number of training set samples was 68 and 65, the training set classification error
rate and the test set classification error rate of the system would increase with the increase of the failure time. When the failure time was 0.1s and the
load level was 80% and 100%, the response time of the system was not much different, but there was a difference of 0.82 in the mean square error
value.

Keywords: comprehensive feature quantity analysis; power equipment; fault diagnosis and prevention of railway power equipment; feature mining;
fault monitoring

1. INTRODUCTION

The safe and reliable functioning of the electrical equipment
of a railway system helps to ensure that daily operations are
not interrupted. There are many reasons for the failure of
electrical equipment, and the factors responsible for failure
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are complicated. Traditional troubleshooting and diagnosis
tend to rely on the staff’s years of experience detecting faults
and their causes, rather than on the analysis of scientific
data. Therefore, the diagnosed cause of the fault is often
inconsistent with the actual situation and eventually needs
to be re-examined, which extends the maintenance cycle,
causing major troubles for electricity companies and residents.
When the railway power equipment fails, if the staff can
find the cause of the equipment failure in time, and take
corresponding remedial measures in time to prevent serious
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consequences of this failure, this can reduce not only the
adverse economic and property damage caused by failure,
but also serves to remind the staff to check and replace old
components when necessary, or to improve and optimize the
power technology. If these faults cannot be fixed in time,
any damage to a particular piece of equipment will eventually
have a negative impact on the operation of the entire power
system. In severe cases, the equipment can explode and cause
a fire. In addition to causing financial and property losses,
these problems may endanger personal safety. Therefore, it
is vital to create an intelligent system that can diagnose and
prevent faults in the electrical equipment of railways . The
method of comprehensive characteristic variable analysis can
ensure the safety and reliability of the power equipment in the
running state.

The method proposed for fault detection and prevention
involves real-time monitoring of comprehensive characteristic
variables of the operation status of railroad power equipment.
The proposed system records the fault information when
the power equipment fails, and analyzes the cause of the
fault according to the information of the fault characteristics.
This can help the maintenance crew to repair in time,
reduce the time required for troubleshooting, and prevent
equipment failure that could have serious consequences. The
comprehensive feature quantity analysis identifies the fault,
and a computer algorithm is used to calculate and determine
the fault location according to certain statistical data. The
main function of this system is to aggregate, process and
classify the information displayed in different forms and
at different time periods, and then formulate corresponding
strategies according to the information in order to achieve
the desired outcome. Because of its powerful performance,
artificial intelligence technology is effective in systematic
fault diagnosis. In particular, the data information analysis of
the characteristics’ parameters is carried out by means of the
powerful self-learning ability and data processing function,
and the obtained information data is recorded. By mining the
characteristics’ parameters, an appropriate algorithm model
is established to improve the accuracy of fault identification.

The diagnosis and prevention of railway power equipment
failures are very important since serious equipment failures
may endanger life and property. Therefore, many scholars
have studied this issue. Abdollah used the method of dynamic
resistance measurement to study the faults such as the contact
corrosion of gas circuit breakers in power equipment [1].
Arora analyzed several faults that were likely to occur in
transformers and proposed that continuous monitoring and
on-site diagnosis methods should be used to prevent the
occurrence of these faults [2]. Shahid applied the Hilbert-
Huang transform to the feature extraction of cable damage.
The main purpose of this study was to predict the service
life of the cable by identifying the degree of damage [3].
Abdin adopted a grid fault risk assessment method in a
unified pricing market environment, mainly dealing with the
energy cost consumption of different line faults [4]. Artigao
examines and explains power generation technology and
discusses the causes of generator-related failures in railway
power equipment [5]. Qiao analyzed the fault diagnosis and
prevention of wind turbines by examining the current state
caused by the generator [6]. Although all the aforementioned

studies focus on the failure of power equipment, most of the
research methods are too complex, and costly in terms of
money and time. Therefore, they cannot be applied to the
current problems.

The use of comprehensive feature quantity analysis can
simplify complex problems, and is a method suitable for
resolving many technical issues. Therefore, it is also one of the
most sought-after studies by international scholars. Xz used
a convolutional network to extract and analyze the features of
urban scene images, and classify the images according to the
comprehensive features [7]. Yi performed a comprehensive
phosphoproteomic analysis of a small population of cells
using a comprehensive feature volume of isobaric markers
[8]. Dackermann used the established frequency response
function to construct a comprehensive feature quantity to
identify the cepstral damage in the progressive damage
structure [9]. Zhang constructed a comprehensive feature
evaluation index in terms of quantity, instruction and ecology
to evaluate the restoration potential of cultivated land, and
used a clustering algorithm combined with the feature to
analyze the restoration strategy [10]. Babatunde collected
academic-related characteristics such as the average score and
standard deviation of graduates to establish comprehensive
feature evaluation indicators, and analyzed and evaluated the
method of graduate employment in the construction industry
based on the building information model incorporated into
the teaching method of the Department of Education [11].
Although the above researches have mentioned the method
of comprehensive feature quantity analysis, the research on
fault diagnosis and prevention in terms of power equipment
is relatively scarce. Therefore, the research direction of this
paper is of great significance and can fill some gaps in this
area.

The main purpose of this paper is to design is to design
a system that enables timely fault diagnosis and issues an
early warning that the functioning of electrical equipment
is compromised. The two important modules of power
equipment fault diagnosis and power equipment fault early
warning were designed, and the power equipment fault
detection index was established. The novel contribution of
the paper is that it proposes a method of mining characteristic
parameters using artificial neural network to establish a fault
diagnosis and prevention system for power equipment.

2. DESIGN METHOD OF POWER
EQUIPMENT FAULT DIAGNOSIS
AND PREVENTION SYSTEM

2.1 Fault Diagnosis of Railway
Power Equipment

(1) Railway power equipment
There are many types of power component modules in

power equipment. These modules are roughly divided into
two types: power generation plant and power supply plant
[12]. In modern power systems, power equipment often
has higher voltage levels. It is mainly responsible for the
transmission and conversion of power in the power grid,
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Figure 1 Maintenance of electrical equipment.

and is the key to supporting the operation of the entire
power grid. Manual maintenance is often required in the
daily maintenance of railway electrical equipment, and the
maintenance of electrical equipment is often accompanied by
high risks. The images in Figure 1 below show maintenance
crews performing tasks on electrical equipment.

In the whole railway power system, the main function of
electrical equipment is to perform voltage conversion and

regulation [13]. The role played in the power transmission
process is very critical, as it is related to the operation of
the entire power system and the continuous stability of the
power supply [14]. In addition, the manufacturing cost and
manufacturing cycle of power equipment are very high, and
most of the equipment is installed in the open air where, over
time, it is eroded by the natural elements. Therefore, electrical
equipment needs to be regularly maintained and/or repaired.

vol 31 no 6 November 2023 475



POWER EQUIPMENT FAULT DIAGNOSIS AND PREVENTION BASED ON COMPREHENSIVE FEATURE QUANTITY EVALUATION

Table 1 Common electrical equipment failures.

Device Cause of Issue

transformer faulty tap changer, tank element
breaker oil and gas sealing ring failure, insulation medium mutation

isolating switch connector overheating, transmission failure
transformer body overheating, high voltage breakdown, insulating medium leakage

Figure 2 Schematic diagram of power index detection.

However, the traditional maintenance process includes many
items and there are some problems that are not easily detected.

(2) Failure of electrical equipment
Comprehensive feature analysis is utilized for fault diag-

nosis and prediction of power equipment failure. This can
update the condition and service life of electrical equipment
in time. It also helps staff understand the operation of
equipment and provides information about any maintenance
work that is required, which greatly saves manufacturing
costs and resources. When carrying out the comprehensive
characteristic quantity analysis of power equipment, it is first
necessary to have a comprehensive understanding of the type
and probability of failure, as well as the severity of the po-
tential accident. Then, according to the characteristics of the
different electrical components and devices, corresponding
effective measures are taken. For those key parts that are
more prone to problems and have a large impact range but
are difficult to find, major inspections are carried out. Some
common fault problems are shown in Table 1.

(3) Power equipment testing indicators
In the case of the growth rate of the national economy,

the number of railway power equipment is also increasing
under the circumstance that the mileage of high-speed rail
continues to increase, and the automation of power system is of
great help to the railway power system. electrical equipment
is easily affected by the use cycle of the components of
the machine itself, as well as environmental changes in
temperature and humidity [15]. The situation of each part
of the affected equipment would change. When a change
exceeds the planned range, this would affect the functioning
of the electrical equipment. The power equipment detection
indicators are shown in Figure 2.

2.2 Fault Diagnosis and Early Warning
System Design

(1) Fault diagnosis module
There are usually two methods for diagnosing equipment

faults. The fault tree displays the logical information of
faults generated by the inference system, which is equivalent

to inferring other related characteristic variables from the
characteristic variables of a fault. Another method is the
expert system, where a database inference model is built
based on system failure knowledge [16]. It extracts the real-
time monitoring data collected in the field and sends it to
the fault knowledge database to carry out logical analysis,
and determine the cause of the fault from the relationship
of the characteristic quantities. These two methods are used
according to the actual situation. The fault tree method is
widely applicable, and its operation is more convenient. The
expert system needs to establish a database inference model,
so it is relatively expensive. Given this, smaller enterprises
would not choose this method. Figure 3 shows the structure
of the fault diagnosis module.

(2) Fault early-warning module
The fault early-warning module is used for the real-time

monitoring of various index data of the electrical equipment
in operation [17]. Then, the monitored data is returned to
the set target value data center for calculation in time, and
the obtained output vector is a comprehensive value. This
comprehensive value is used to determine whether the vector
value of a certain fault type meets the requirements. If the
corresponding reference value is searched in the database,
an alarm is issued, and corresponding emergency action can
be taken through a pre-set program. After the staff receives
the alarm, the corresponding solution measures are taken
through the displayed fault-warning content. By means of
comparison, the final result determines whether the content
of the fault diagnosed by the system is correct. If there is no
near fault type that can be used as a reference to compare the
diagnostic results, the staff needs to further check the electrical
equipment. The flowchart of the fault-warning module is
shown in Figure 4.

(3) Design of railway power equipment fault diagnosis and
early-warning system

The monitoring method of this system structure is based on
the data obtained from sensors such as proximity switches and
transmission interfaces installed on the electrical equipment
site to monitor electrical equipment, and input it to the fault
diagnosis module to generate a corresponding comprehensive
characteristic parameter quantity of electrical equipment
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Figure 3 Structure of fault diagnosis module.

Figure 4 Flow chart of fault warning module.

Figure 5 Flow chart of power equipment fault diagnosis and early warning system.

faults. Then, the detection data are sent to the calculation
board for algorithm calculation. The electrical equipment
fault diagnosis process is actually a comparison of the
electrical equipment fault real-time state parameters with the
parameter query system of the computer database, so as to
obtain the real-time diagnostic data content and determine the

cause of the fault. If it is found that if a parameter exceeds
the expected value, it turns on the system warning through the
fault-warning system, and responds according to the preset
program, which will be displayed on the computer monitor.
The diagram of the power equipment fault diagnosis and early
warning system is shown in Figure 5.
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2.3 Analysis of Characteristic Quantity of
Railway Power Supply Fault

(1) Feature correlation data processing
The comprehensive feature quantity is the basis for

fault detection, and the occurrence of faults changes the
temperature [18]. When the electrical equipment is powered
on and the equipment load is too high, this raises the
temperature, and it is easy to detect the temperature change at
this time.

According to the correlation of the amount of current, the
feature extraction is carried out by means of horizontal and
vertical comparison. The three-phase contacts that belong
to the same electrical condition are regarded as a whole.
For example, switch contacts such as capacitor cabinets and
transformers include the three X, Y , and Z phases. At the
same time, the temperature information of the three-phase
contacts is monitored, and the difference between the three-
phase contacts is obtained by the difference method as the
characteristic detection data. TX , TY , TZ represents the
temperature of the X, Y, Z three-phase switches in the same
three-phase point library at the same time.⎧⎨

⎩
TXY = |TX − TY |
TY Z = |TY − TZ |
TX Z = |TX − TZ |

⎫⎬
⎭ (1)

Theoretically, if a current-carrying fault occurs, the temper-
ature of the contact with the larger contact resistance is always
higher than that of the other contacts. TX and TX∼ represent
the temperature of the upstream and downstream contacts of
the A-phase, respectively. The differential temperature of the
contacts of the same circuit is longitudinally compared:⎧⎨

⎩
TX X∼ = |TX − TX∼|
TY Y∼ = |TY − TY∼|
TZ Z∼ = |TZ − TZ∼|

⎫⎬
⎭ (2)

The value of similarity is a common indicator used to
measure the degree of similarity between vectors [19].
It is the basis for then finding the nearest neighbor of
the item to be predicted. Of the several commonly-used
similarity measurement methods, cosine similarity has good
performance. Therefore, cosine similarity is selected as
the similarity measurement method. The cosine similarity
calculation formula is:

sim(ka, kb) = ka ∗ kb

|ka| ∗ |kb| =
∑

v∈Sa,b(rv,arv,b)√∑
v∈Sa

(rv,a)2
√∑

v∈Sb
(vv,b)2

(3)
After calculating the similarity value, the M items with the

highest similarity with the item to be predicted are selected
as the nearest neighbors. According to the score data of
the nearest neighbors, the predicted score value of the target
project can be calculated. The score prediction formula of the
project collaborative filtering algorithm is as follows:

Psv,ka = ra +
∑

kb∈neighborsia
sim(ka, kb) ∗ (rv,b − rb)∑

kb∈neighborsia
sim(ka, kb)

(4)

Relevance weighting is an empirical weighting method that
affects the similarity calculation according to the number of

times a user has rated or an item has been rated [20]. The
calculation formula for the relevant weighted weight and the
calculation formula for the weighted similarity are:

eka ,kb =
{

Q/T Q < T

1 Q ≥ T
(5)

sim′(ka, kb) = e∗
ka ,kb

sim(ka, kb) (6)

The correlation weight would affect the calculation of the
similarity, so the change of the similarity value after weighting
would also bring about a change to the nearest neighbor set of
the item to be predicted. The scores of the items to be predicted
obtained according to different nearest neighbor sets would
also be different. Equation 7 is the score prediction formula
after the correlation weighting has been introduced:

P ′
sv,ka

= ra +
∑

kb∈neighborsia
sim′(ka, kb) ∗ rv,b∑

kb∈neighboria
sim′(ka, kb)

(7)

(2) Artificial neural network
An artificial neural network is a network formed by

interconnecting a large number of neurons. Its structure is
similar to the human brain neuron network, and a simple
computing model is built on the basis of this structure.
A neuron is the most basic unit of a neural network. Its
receiver is responsible for receiving information, and its
output is responsible for transmitting information. It is
an adaptive nonlinear dynamic system consisting of a large
number of simple basic element neurons connected to each
other. A neural network adjusts the value of the transfer
function by changing the weight relationship between neurons
to control the threshold of the weight so as to meet the
required accuracy requirements [21]. The neuron is the
basic information processing unit of neural network operation.
Figure 6 below depicts the neuron model.

(y1, y2, · · · , yn) is set to be the input signal,
(qk1, qk2, · · · , qkn) is the synaptic weight of neuron k,
wk is the output of the linear combiner of the input signal.
The bias is dk , and the activation function is ϕ(·). xk is the
neuron output, and the bias dk is the external parameter of
the artificial neuron k. It can either inhibit or strengthen wk .

wk =
n∑

i=1

qki yi (8)

xk = ϕ(wk − θk) (9)

After the input value passes through a certain neuron k, the
output value is:

xk = ϕ

(
n∑

i=1

qki yiwk − θk

)
(10)

The activation function performs the transformation of the
network input obtained by the corresponding neuron, also
known as the activation function. It gives the neural network
the characteristics of nonlinear mapping [22]. Commonly-
used activation functions have the following three forms.
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Figure 6 Nonlinear model of neurons.

Figure 7 Activation function of a neural network.

The threshold function is:

ϕ(uk) =
{

1 uk ≥ 0

0 uk < 0
(11)

uk =
n∑

i=1

qki yi − θk (12)

The corresponding output is:

xk =
{

1 uk ≥ 0

0 uk < 0
(13)

A piecewise linear function is a linear combination
that becomes a threshold unit as the amplification factor
approaches infinity.

ϕ(uk) =

⎧⎪⎨
⎪⎩

1 uk ≥ 1
1
2 −1 < uk < 1

0 uk ≤ 1

(14)

Sigmoid function: the most commonly used function
form is:

ϕ(uk) = 1

1 + exp(−cuk)
(15)

ϕ(uk) = tanh
(uk

2

)
= 1 − exp(−uk)

1 + exp(−uk)
(16)

Threshold function, piecewise linear function, and sigmoid
function are all monotonic and asymptotic [23]. The three
function representations are shown in Figure 7.

For the fault identification and classification performance
of neural network systems, the method of feature classification
evaluation is usually adopted. There are four general feature
classification performance evaluation methods:

m R is set to be the number of misclassified samples in the
training set, and MR is the total number of samples in the
training set. Training set classification error rate is:

εR = m R

MR
× 100% (17)

m H is set to be the number of samples misclassified by the
test set, and MH is the total number of samples in the test set.
Test set classification error rate is:

εH = m H

MH
× 100% (18)

m R is set to be the total number of samples in the training
set, A is the number of network neurons, xd

(i, j ) is the ideal
output value of the i output neuron of the j sample, and x(i, j )

is the actual output value of the i output neuron of the j sample.
Mean squared error for the training set is:

M SER = 1

AMR

MR∑
j=1

A∑
i=1

(xd
(i, j ) − x(i, j ))

2 (19)
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Table 2 Experimental sample dataset.

Load Level Downtime Training Sample Set Test Sample Set

80% load 0.15s 68 340
0.1s 65 325

100% load 0.15s 64 320
0.1s 43 215

120% load 0.3s 41 205
0.1s 28 140

Figure 8 Classification of error rates for different load levels.

Mean squared error for the test set is:

M SEH = 1

AMH

MH∑
j=1

A∑
i=1

(xd
(i, j ) − x(x, j ))

2 (20)

3. EXPERIMENT AND EVALUATION
OF RAILWAY POWER EQUIPMENT
FAULT DIAGNOSIS AND EARLY
WARNING MODEL SYSTEM BASED
ON ARTIFICIAL NEURAL NETWORK

The fault diagnosis and early warning system for railway
power equipment is used to analyze the fault characteristics.
Therefore, in order to explore the performance efficiency of
the system, this experiment uses the sample dataset released by
the Institute of Electrical and Electronics Engineers (IEEE) to
test the system. The fault types are all set to a three-phase short
circuit, and different fault times and load levels are set. The
samples are divided into training samples and test samples.
Twenty percent of the test samples are used for training, to
ensure that the results obtained by the system test would not

be affected by the proportion of training samples. These data
are input into the power equipment fault diagnosis and early
warning system to conduct systematic training and learning,
and then experiments are conducted on test samples. The
experimental sample dataset is shown in Table 2.

The sample datasets shown in Table 2 above is input into
the system. The system performs the analysis through the
comprehensive feature quantity. Then, the vector features
are calculated, analyzed and learned through the artificial
neural network, and the system can automatically generate
a data analysis library about power equipment faults. After
the training sample set is tested, the test data is input
into the system. The selected comprehensive feature is
calculated by threshold to obtain the optimal comprehensive
feature. The system detects the test samples according to the
comprehensive feature quantity, and uses the detected faults
to predict and classify them according to the artificial neural
network. Finally, the result is obtained. This experiment
compares the classification error rate of the training set and
the classification error rate of the final result of the test set, as
shown in Figure 8.

The experimental data shown in Figure 8 shows that under
different load levels and different fault occurrence times, the
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Table 3 Experimental datasets with the same number of samples.

Load Level Downtime Test Sample Set

80% load 0.1s 160
100% load 0.1s 160

0.15s 160
120% load 0.3s 160

Figure 9 Response time and mean squared error at different load levels.

classification error rate caused by the classification of the
training set and the test set by the system varies. By comparing
the failure time and the number of samples under the same load
level, the error rate of the system for failure classification
would be affected. By comparing the experimental results
when the load level is 80% and the number of training set
samples is 68 and 65, it can be seen that when the number of
samples is similar, the classification error rate of the training
set and the classification error rate of the test set of the system
would increase with the increase of the failure time. This
is because the less number of times the electrical equipment
fails, the higher the accuracy of the system’s identification and
classification of the fault. However, when the failure time of
the equipment is the same, the more the number of samples,
the lower the error rate of the system for fault identification
and classification.

Through the above research, it was found that the load level,
fault duration and the number of samples would reduce the
accuracy of the system’s identification of power equipment
faults. In order to further explore the efficiency of the system,
several sample data were extracted from the above sample
dataset. The number of samples was set to the same number,
and further experiments were carried out to determine the
response time and mean square error of the detection system.
The details of the experimental sample dataset are shown in
Table 3.

The experimental sample data is input into the system, and

the response time of the system and the mean square error of
the final classification result are recorded. The statistics for
the experimental results are shown in Figure 9.

It can be seen from Figure 9(a) that the system’s response
time to power equipment fault detection is affected by the fault
duration and load level. However, when the failure time is 0.1s
and the load level is 80% and 100%, the response time of the
system is not much different. The response time of the impact
system is affected mainly by the fault duration of the power
equipment, and the two are positively correlated. It can be
seen from Figure 9(b) that the mean square error value of the
system for fault identification is affected by the load level and
the fault duration. When the failure time is the same, the mean
square error value increases with the increase of the load level.
When the load level is the same, the mean square error value
also increases with the failure time.

4. CONCLUSIONS

The main purpose of this study was to ascertain the importance
of railway power equipment and the consequences of having
electrical railway equipment that is faulty or prone to failure.
The focus is on the design of fault-diagnosis and early-
warning systems. The design of two important modules for
the diagnosis of power equipment faults diagnosis and for
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early warning was explained in detail, and the causes of faults
and the indicators that need to be detected were analyzed.
It was proposed that an artificial neural network be used
to mine characteristic parameters to establish an effective
algorithm model to improve the accuracy of fault detection.
Finally, experiments were conducted to test the efficiency and
accuracy of the fault-diagnosis and early-warning systems
based on an artificial neural network. For the experiments,
different load levels were set for the power equipment at
different fault times. The training set classification error
rate and the test set classification error rate of the system’s
fault identification and classification results were compared,
and the performance of the proposed system was evaluated
according to the system’s response time to fault occurrence
and the mean square error value of the identification result.
This research finally shows that the fault diagnosis and
early warning system based on artificial neural network is
far superior to other systems in terms of efficiency and
performance, it has high accuracy in the perception and
early warning of power equipment failure, and has strong
practicability.
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