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Blasting fragmentation in mines and mountains reduces rock handling and transportation overheads. With the development of cloud technologies and
their application in mining, the reverse engineering paradigm is applied to identify the minor structure in the fragmentation process. The classification
of the particle identification/structure is performed by deconstructing the actual blasting process. This article introduces a three-dimensional analysis
using Reverse Engineering (3DA-RE) paradigm for identifying the overhead resulting from the blasting of rock during mining operations. By means of
this analysis, the proposed method identifies the cost overloading factor in the blasting process. The fundamental features such as structure detection,
fragmentation level, and cost handling, are analyzed in a 3D manner. The different dimensions are established using the cloud analytics of various
previous mining actions.
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1. INTRODUCTION

In mining, rock fragmentation is a process whereby rock is
blasted using explosives. Rock fragmentation by means of
blasting is one of the essential tasks to perform in mining as
it loosens the rocks to be excavated, and improves the overall
performance and efficiency of mining operations [1]. The
main aim of the blasting process is to remove fragmented
rocks present in the mining field. The blast-induced rock
fragmentation require accurate location and calculation of
explosives [2]. The rock fragmentation distribution (RFD)
method is mainly used in mining. RFD establishes specific
criteria before the explosion process [3]. The blasting
operations, techniques, and steps of RFD were calculated to
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reduce the degree of damage caused by rock blasting in the
mine. RFD also identifies parameters and variables to provide
the best information for evaluation criteria [4]. Calculating
the quantity of explosive required is a complicated task when
blasting. RFD understands the relationship between rocks
and explosives, which provides necessary data to calculate
the overall quantity of explosives [5].

Cloud computing is very widely used for various functions
and in different fields, and is very effective in mining
operations and data analysis. Cloud computing is also used
for rock blasting, reducing the level of false data analysis.
Via data analysis, cloud computing identifies the necessary
information required for rock fragmentation [6,7]. The cloud-
based fragmentation method is used in data analysis to detect
fragmented data and produce data for another process [8].
Parameters, variables, patterns, and data scales are required
for the blasting of rocks (fragmentation). A cloud-based
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method is used here for rock blasting, reducing the amount
of time required for identification and computation [9].
The locally convex connected patches (LCCP) algorithm
based on cloud is commonly used in data analysis for
rock fragmentation. LCCP uses filtering techniques to
detect fragments and solve optimization problems [10]. A
convolutional neural network (CNN) algorithm using cloud
computing is used for rock fragmentation by blasting. CNN
achieves high accuracy in fragment detection that improves
effectiveness and reliability of the data analysis [11].

Error mitigation is a process that reduces the error rate in
operations, and is crucial when fragmenting rocks since the
blasting process requires accurate information [12]. Error
mitigation improves the overall performance and efficiency of
rock fragmentation, and is achieved by means of the reverse
engineering technique. First, reverse engineering determines
the relationship among variables via reasoning methods that
ascertain key factors and values [13]. Reverse engineering
tools are primarily used in rock fragmentation to reduce
error levels in mining and analysis systems [14]. Reverse
engineering tools identify patterns and fragment parts that
provide optimal data for blast-induced rock fragmentation.
The reverse engineering technique detects fragmented rocks,
improving error mitigation and accuracy. Models based on
fragmentation maximize the performance and robustness of
blasting operations [15, 16].

2. RELATED WORKS

Han et al. [17] introduced the combined finite-discrete
element method (FDEM) for fragmentation using contour
blasting. The main aim of the proposed method is to reduce
the complexity level of blasting fragmentation. FDEM is used
primarily in tunneling that has more in-situ stress. FDEM
reduces fractures under tunnels that provide appropriate
services to customers. The proposed FDEM improves overall
rock heterogeneity, decreasing the fracture of rocks during
tunneling.

Bamford et al. [18] proposed a deep learning approach for
rock fragmentation analysis systems. A deep neural network
(DNN) algorithm is used here to predict characteristics and
functions for fragmentation. DNN reduces the time required
for prediction, thereby improving the performance of the
analysis system. The proposed DNN approach maximizes
prediction and detection accuracy.

Gou et al. [19] developed a discrete element (DEM) model
for particle fragmentation. DEM analyses the energy that is
required to perform fragmentation. Particle size distribution
(PSD) is identified here, providing the necessary information
to DEM. The proposed model reduces friction levels among
particles, maximizing the reliability of fragmentation.

Tao et al. [20] designed an integrated analytical modeling-
based, blast-induced rock fragmentation method. The
analytical model first identifies patterns and dimensions of
rocks, thereby producing optimal data for fragmentation.
Then it determines the behaviors of rocks before fragmen-
tation. The proposed method reduces in the time required
for identification and prediction. Compared with other

methods, their proposed method achieves high performance
and effectiveness in terms of rock fragmentation.

Ozer et al. [21] proposed an analytical-based blasting
approach for bored pile excavation. Airy stress function to
predict the exact stress level of rock at rest. Airy stress
functions are used here to predict rocks’ exact stress levels
during recessThe diameter of holes, pressure, and strength
of rocks are required to calculate the amount of explosives
required for blasting. This approach improves the efficiency
and performance of rock fragmentation. The blasting process
reduces cost and increases the speed of fragmentation.

Zhang et al. [22] proposed an entropy weighted matter-
element extension model to evaluate the effectiveness of
charge blasting. The entropy weighting method is used here
to detect the matter-element index of rocks. The proposed
model reduces both the cost and time required for evaluation.
The proposed model increases the quality of roadways by
improving prediction accuracy.

Vokhmin et al. [23] introduced a new method for
underground blasting fragmentation prediction. First, drilling
and blasting pattern parameters are identified to provide
optimal data for further processes. The proposed method
is mainly used for oversized or undersized fragmentation.
The cost of computation is reduced, which improves the
efficiency of blasting. Experimental results show that the
proposed method achieves high accuracy in prediction for rock
fragmentation.

Zhang et al. [24] developed a rock size distribution (RSD)
prediction model for mine bench blasting based on the ant
colony optimization (ACO) method. The boosted regression
tree (BRT) algorithm is also used to detect action information
related to RSD. BRT reduces delay time in predicting variables
and parameters of RSD and reduces optimization problems
during prediction. The proposed ACO method improves the
accuracy of RSD prediction, increasing the efficiency and
performance of bench blasting.

Miao et al. [25] proposed a muck-pile model for
predicting rock fragmentation size. First, the proposed
model analyzes the quality, parameters, and patterns of rocks,
thereby providing optimal information for prediction. The
support vector machine (SVM) regression model analyzes
the necessary data for prediction. Compared with other
models, the proposed model achieves high accuracy in terms
of size distribution prediction, improving the feasibility and
significance level of fragmentation.

Ding et al. [26] proposed new size-distribution char-
acteristics and fragments-prediction methods for open-pit
mines. The main aim of the proposed method is to predict
the fragments of rocks before the mining begins. Blasting
parameters are identified in order to produce appropriate data
for prediction and detection. Size and fragment distribution
predictions are crucial to all mining operations. The proposed
method improves the coal rate and reduces the level of dust
pollution in open-pit mining.

Zhou et al. [27] introduced new particle size distribution
prediction models, namely genetic algorithm (GA) for adap-
tive neuro-fuzzy inference systems (ANFIS). GA is used here
to predict parameters and size distribution patterns so as to
produce feasible prediction information. GA-ANFIS reduces
the root mean square error (RMSE) in computation which
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Figure 1 3D analysis method using reverse engineering (3DA-RE) paradigm.

maximizes the effectiveness of prediction. The proposed
GA-ANFIS improves the overall prediction accuracy, thereby
increasing a mining system’s potential and efficiency.

Zhang et al. [28] designed bunch-holes blasting for rock
fragmentation. The proposed method first identifies the
relationships of rocks and fragments in order to calculate
the amount of explosive required. The proposed method
reduces critical delay intervals during the mining process.
The parameters, patterns, fragments, and sizes of rocks
are detected before fragmentation. Bunch-hole blasting
maximizes performance and quality of blasting fragmentation
by reducing cost and energy consumption rate.

Chen et al. [29] introduced a new evaluation method for
pyramid-cut blasting using data for fragmentation behavior.
The behavior of fragments is calculated based on uniaxial
compression in rocks. The proposed evaluation method
provides optimal data for further blasting fragmentation. The
proposed method improves accuracy in evaluating pyramid
cut blasting, which improves the efficiency and robustness of
mining operations.

3. THREE-DIMENSIONAL ANALYSIS
USING REVERSE ENGINEERING
(3DA-RE) PARADIGM

By utilizing the microscopic composition of the three-
dimensional structure of explosions, the rock fragmentation
caused by mountainous areas and mines was analyzed.
The proposed 3DA-RE model was used as an input for
the deconstruction process based on structural description,
fragment level research, and cost prediction. 3DA-RE not
only affects the blasting fragmentation and leveling of mining
geotechnical treatment, but also improves the safety of miners.
Therefore, the calculation of 3DA-RE is of great significance
in today’s scenarios. This method is shown in Figure 1.

Three-dimensional blasting fragmentation analysis is used
to identify the overhead incurred by mining operations. This
analysis is used to detect the size of blasted rock particles
and region segmentation through structures based on the
similarity between pixels. The mines and mountain structures
are captured in order to analyze the ground truth. The front,

middle and back of each muck pile is charged to ensure that the
particle size distributions in the structures reflect those in the
muck pile. The Reverse Engineering process is then deployed
to analyze the networks for particle identification/ structure
classification by deconstructing the actual blasting process.
Based on the captured structure of the blast muck pile, the
cloud analytics and their application in mining are analyzed.
Then Reverse Engineering is applied to identify the rock
fragments in mines and mountains. This process can locate
their position, identify particles and classify the structure
according to the original design. Finally, we apply the Reverse
Engineering paradigm to measure the rock fragmentation
throughout the mining system.

This methodology consists of three challenging steps: (1)
structure analysis based on unique patches detection through
an entire structure of mines and mountains; (2) the application
of a trained Reverse Engineering model to identify the level
of rock fragment segmentation; and (3) identification of the
cost overloading factor. In this article, the the actual process
is deconstructed to reduce the overhead incurred by rock
handling and its transportation. Through deconstruction of
previous processes, many structures are captured in blast
muck piles for detailed rock fragmentation analysis. The
structures differ in size and pixels in the rock fragmentation
process. The different dimensional structures are processed
using cloud analytics for previous mining actions. Cost
overloading is identified using knowledge learning for all
three dimensions. The overloading process is modified using
the structure alteration to reduce the overhead in another
process. It ensures affordable and flawless mining services
and maximizes the deconstruction process in blast-induced
rock fragmentation.

4. REVERSE ENGINEERING IN
DECONSTRUCTION PROCESS

This method applies the Reverse Engineering paradigm to
detect and analyze segments of rock fragments in blast
muck piles. It consists of three steps: first, the regions
with possible rock fragments are analyzed using structures;
second, the fragmentation levels in blast muck piles are
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Figure 2 Structure Detection using FL .

predicted; third, the handling costs are analysed for each
region. In the deconstruction process, loading and unloading
analyses are concerned with cost handling, which is the
paramount consideration in rock fragmentation. Instead of
performing the Reverse Engineering process from random
blast muck piles, the structure detection (SD), fragmentation
level (FL)and cost overloading (CO ) regarding three outputs
are used to ensure affordable and flawless mining services
during the fragmentation process. By means of cloud
analytics, the overhead incurred by mining practice Mp in
rock fragmentation through 3DA-RE is achieved. Cloud
technology is used to identify blast muck piles in mines
and mountains. The particle identification and structure
classification is performed by deconstructing the actual
process based on point cloud recognition. The probability of
rock fragmentation in mines and mountains is successfully
analyzed at different time intervals t without flaw and is
calculated with

ρ(B f r ) =
∑

i∈t SD ∗ FL∑
j∈n CO

flaw− pd
t (1)

In equation (1), the identification of blast muck piles relies
on the particle size and flaw analysis at different time t
instances and the actual process used for blasting. Further
blasting fragmentation is analyzed without any flaw detection.

If n denotes the number of possible blasting in mines, the
instance of maximizing structure detection ρ(B f r ) is output
in Mp = 1 from differing factor and hence the particle
size identification and structure detection is computed based
on CO , t ∈ n. In fragmentation, flaws can be identified
using flaw in t and assists with Reverse Engineering for the
instance of B f r . This blasting structure detection and level of
fragmentation is computed using equation (2) and is valid for
t alone

CO∀ t ∈ n = (1 − pd)
SD

CO
.Mp .

FL

n
i ∈ t (2)

In equation (2), the different intervals of blasting fragmen-
tation in mines can be analyzed through previous process de-
construction in t instance; if the condition CO∀t ∈ n exceeds
the actual process, then cost overloading is required. The
structure classification in blasting fragmentation maximizes
cost; deconstructing the process used for blasting serves as
{Mp, n, CO , ρ(B f r )} post the fundamental features for all t

instances. The output for identifying the small structure in the
fragmentation process of B and FL∀ j ∈ n is obtained through
cloud analytics, analyzed in a 3D manner. The structure
detection using fragmentation level is illustrated in Fig. 2.

The mine (rock) dimensions are measured as θ from which
individual ρ(B f r ) is estimated. The SD is identified as
(t ∗ θ) for t ∈ n) provided Co is variable. Considering the
Co from the loading/unloading features the MP is revisited.
Therefore the flaws for n across different dimensions are
identified. The change in SD is observed for new θ under
FL (Fig. 2). The different structures are captured for
structure detection and fragmentation level in blasting. In the
deconstruction process, the different dimensions are handled
using previous mining actions relies on Mp and CO for∑

i∈t (B f r )i = SD , pd and ρ(B f r ) based on a different
dimension as in equation (1). Let Ld and Und denote loading
and unloading of mines blasting as in equation (1) in a 3D
manner. This refers to the cost overloading factor in any
blastings analyzed using the previous deconstruction process.
Therefore, the deconstruction process is carried out using DP

DP = SD + FL + CO (3)

5. REVERSE ENGINEERING PROCESS

The Reverse Engineering paradigm helps to detect structure
and rock fragments due to fragmentation.Therefore, combin-
ing all structures to obtain the original structure to estimate
the final cost overload is essential. The issue is addressed in
some individual rock fragmentations available in any of the
identified blastings. In this study, we modified the overloading
process using structure alteration. Identify cost overload
factors from a set of exploding deconstructed processes with
cloud analysis. The identified overhead in cost handling i for
every range of MP relies on pixel and j . Then, we estimate
the general overlap OV r between each region with:

OV r = MP i ∩ MP j∀i j ∈ f law (4)

The equation (4) is then used to estimate the relative ratio
and possible overlap ratio, and the equation (5) is used to
analyze each region.

Ri = OV r i j /MP i (5)
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Figure 3 Reverse engineering process for fusion.

such that,
R j = OV r i j /MP j (6)

If Ri ≥ θ and R j ≥ θ , two regions are combined into
one in order to analyze the same blasting fragmentation. The
identification of large fragments, whose structure is larger
than the size of a particle, is computed; generally, reverse
engineering is used to identify blast muck piles in mines. The
reverse engineering process for fusion is depicted in Fig. 3.

In the reconstruction process using reverse engineering
(Fig. 3), the flawless regions are identified for OVr . This
OVr results in flows for the forwarding analysis, provided
that Ri and R j are extracted; this extraction relies on Ld

and Und observed for which Co is analyzed. Considering
the knowledge update for the new Mp, n dimensions are
fused. This fusion process implies SD (for reconstruction)
across ρ(B f r ). For all the conditions of Ri and R j , there is
probably no loading or unloading of small structure fragments
identified beyond another. Therefore, both regions of i
and j are included based on cost overload. Moreover, the
computations for deconstructing the actual process with a
different dimension of θ values and identifying θ = 0.5 are
suitable for small structures in blasting.

6. RECONSTRUCTION PROCESS
ANALYSIS

In the reverse engineering paradigm, described in the
Introduction, the restructuring computation is performed to
express the replacement process in blast muck piles, where
it estimates the fragment percentage through particle size
identification or structure classification. In this article, we are
concerned with identifying the small structure of a fragment
by means of cloud technology. Fragment size can be measured
in a particular region through knowledge learning. However,
these identified regions are difficult to visualize for analysis,
so fragment sizes are illustrated as the small structure in
the fragmentation process, and cost overloads are identified.
The proposed model is used for three-dimensional digital
analysis of blasting fragmentation that considers the cost
of overloading and thus disregards the fragmentation level
and structure detection in blasting. The computation of the
similarity S between the actual process and the deconstruction
process is computed with

S =
√

SD ∗ FL

3OV r
(7)

Where the structure detection value and fragmentation level
in a 3D manner, the maximum cost overloading in blasting
fragmentation, CO is the identification of cost overloads in all
three dimensions using knowledge learning,and CO is outputs
in 1. The previous process deconstruction probabilistic factor
relies on cost overloading and reverses the construction of
structural cloud analytics in further blast fragmentation. The
cost overloading factor in blasting fragmentation, the structure
altering is performed. In particular, the contrary section
analysis, as in equation (1), is performed using knowledge
learning to minimize cost overloading in rock fragmentation.
The probability of CO is computed with

ρ(CO ) = ρ(SD ∩ FL)

ρ(Rij )
(8)

where,

ρ(SD) = max(CO) − min(CO)

max(CO)
.ρ(S) (9)

From the equation (8) and (9), the estimation of ρ(CO )

relies on a contrary session as in equation (1) and ρ(S) is
analyzed at different intervals. For any instance of blasting,
ifB f r < CO , then flaw occurrence can be identified in blasting
fragmentation, which replaced the overloading process using
structure alteration. The possible mine blasting regions
are continuously monitored and blocked the transportation
in that location using knowledge learning and ensuring
affordable and flawless mining services, respectively. Instead,
the continuous analysis of three dimensions based on CO

for B f r is processed between the structure classification
and fragmentation level. The likelihood L in blasting
fragmentation analysis ρ(CO) and ρ(B f r ) is computed to
ensure B f r < CO as in equation (10)

Lρ(B f r |CO) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
2π i

expression
[−(B f r )R

n2

]
∀i ∈ n in t

1√
2π j

expression

[
−(B f r − f law)2

R
2S

]
∀ j ∈ n in t

.

(10)
In equation (10), the consideration of cost overloading in a

3D manner for t and
[
t − SD

n

]
instance, the probability of like-

lihood is validated for t intervals. Therefore, the occurrence
of a flaw in blasting is analyzed through the deconstruction
process in any t instances considering the maximizing SD .
Based on the Lh . analysis of ρ(B f r ) and ρ(CO ). The
different dimensions are handled using cloud technologies
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Figure 4 Learning for overload and replacement.

Figure 5 Reconstruction using L .

for performing other mining actions. The overload and
replacement using the learning process are illustrated in Fig. 4.

The Ri and R j replacement pursues the knowledge learning
for recurrent training and analysis. Using the Co occurrence
the FL/L process is differentiated. The mapping performs
(t : n) for identifying ρ(Co) such that Dp is preceded.
Depending on MP , the Und is alone estimated for OVr

for identifying Ri or R j (for replacement) (Fig. 4). In the
following cost overloading analysis based Lh [.] computation,
the objective is to minimize the cost and flaw (t − SD

n ) through
the learning process is to perform restructuring as required
with the construction of structural cloud analytics relies on
B f r ∈ CO and 0 < MP < 1 and ρ(B f r ) ∈ ρ(CO ) �= 0.
To compute the reverse structural cloud analytics based on
True Positive (TP), False Positive (FP ), and False Negative
(FN ) analysis is performed for precision and restructure.
Precisionis used to calculate the accurately detected blast
fragments with all blast fragmentation detected by the method.
Restructuring calculates the ratio of accurately detected blast
fragments with all ground truth-based blast fragments in
mines.

Precision = TP

TP + FN
(11)

Such that

Restructure = TP

TP + FP
(12)

The blasting-induced rock fragmentations are performed
in all t instances due to their precision and restructure
computation in equations (11) & (12). The reconstruction
using L factor is shown in Fig. 5.

The replaced Ri and R j are used for verifying ρ(B f r |Co)

such that L for the succeeding features is observed. Based
on the flaw observed, the i ∈ t and j ∈ t are used for
precision estimation. This is required for addressing the

shortcomings of reconstruction. The above process is utilized
to maximize the precision for which S is estimated (Fig. 5).
Hence, the structure classification and particle identification
rely on a deconstruction process other than replacement to
help minimize cost overloading, overhead in rock handling,
and its transportation in that particular rock fragment region,
and maximize the restructuring for the 0 < MP < 1 condition
in any blasting with different dimensions.

7. PERFORMANCE ANALYSIS

The performance of the proposed method is evaluated using
the same data [30] on rock size, sensitivity, and variations
observed in different blasting processes. Using the Ld and
Und processes, the structures are varied between 2 and 26.
Also, the time-based analysis is conducted for the purpose of
evaluation over 7 hours of Mp . The data is modified for the
assessment as shown in Fig. 6.

The time, FLand demand-based data is extracted from the
input data for assessment. The physical examination provides
rock sizes post the blasting. The demand factor ensures cost
management through Ld and Und provided FL is high/low
(based on size). Considering the cost of handling the SD and
reconstruction recommendation is illustrated in Fig. 7.

The reconstruction recommendations rely on financial
management to reduce Ld and Und . Based on θ and
t modifications the maximum structural possibilities are
analyzed. Post this possibility ρ(Co) ∀ t ∈ n is estimated.
This estimation results in reconstruction from the consecutive
Ld and Und processes. Therefore, for the given data represen-
tation, the Cofor FL and ρ(B f r ) is analyzed in the Fig. 8 series.

The Co is influenced by FL and ρ(B f r ) under different Mp .
This is due to the demand and SD possibilities. Considering
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Figure 6 Data representation for assessment.

Figure 7 SD and Reconstruction Recommendation.

Figure 8 Co Analysis for FL and ρ(B f r ).

the Ld + Und ∈ θ ∗ t ∈ n the Co optimization is performed.
In the consecutive processes, the available Dp and its OVr are
identified for a further split. Therefore, Ri and R j or everyone
is deformed for analysis by achieving high L[ρ(B fr |Co)]. In
this process the ρ(SD) is neglected as Mp is consecutive with
the demand and, therefore Co is adaptable (Fig. 8).

The analysis of the precision of the restructuring process of
ρ(Co) and ρ(SD) is shown in Fig. 9.

The precision decreses with the increase of Co probability
compared to SD . The cost demand increases the SD

for which Dp is pursued; hence, the Ld and Und are
analyzed. The ρ(B f r ) is validated for Mp pursuing

OVr detection; the Ri and R j differentiations rely on
S factor. Considering the knowledge update from the
previous Dp , the L is validated. Therefore, the precision
is retained. In this process, SD improves the analytics
for precision improvement, reducing Co (Fig. 9). The
comparative analysis discussion is presented below for
the metrics deconstruction ratio, data analysis, overload
identification, cost overhead, and fragmentation ratio. The
structures and mining time are varied for different in-
stances. The existing ACO-BRT [24], RFA-DL [18], and
DEM-PSD [19] methods are used alongside the proposed
3DA-RE.
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Figure 9 Precision Analysis.

Figure 10 Deconstruction ratio.

8. DECONSTRUCTION RATIO

The computation for structure detection and level of rock
fragmentation relies on mine blasting and fundamental
features of all three dimensions using knowledge learning as
shown in Fig. 10. In this proposed model, deconstructing the
actual process achieves high-cost overloading by computing
the identification of rock fragmentation level in blasting. In
this article, the mine blasting precision and restructuring
process at different time intervals prevents rock-handling

overhead. The instance of
∑

i∈t SD∗FL∑
j∈n CO

is performed until a

flaw is detected. The flaw is detected based on point cloud
recognition for performing the deconstruction process that
reduces handling costs. Hence, the blast muck piles analysis
from mines and mountains is estimated to maximize the
mining services through the previous deconstruction process
using knowledge learning in a high deconstruction ratio.
The reverse engineer could detect the accurate and reliable
explosion recognition of the mine, so as to reduce the expense
of over load caused by the structure detection.

9. DATA ANALYSIS

In Figure 11, cloud analysis is used for blasting fragmentation
and its application in mining, rock processing and high

data analysis.The fundamental factors are analyzed in a 3D
manner using knowledge learning to analyze data for the
condition CO , t ∈ n and achieves restructuring based on
point cloud recognition. The data analysis is performed for
various previous mining operations with different dimensions.
Hence, in mining, the structure classification and particle
size validation reverse the construction of cloud analytics.
The mine blasting instance is suitable for high data analysis
in the deconstruction process and replaces the overloading
process. Therefore, identifying overhead-causing mining
practices in rock fragmentation through previous deconstruc-
tion processes and rock transportation reduces the overload
of rock fragments. Thus, the blasting is determined by the
mines, and mountains are computed in 3D, preventing high
data analysis due to replacement in fragmentation levels.

Overload Identification
This proposed method achieves high overload identification

in mine blasting analysis depending on structure detection
and fragmentation level at different dimensions computed
using knowledge learning (refer to Fig. 12). The flaw and
overhead are mitigated for the condition

∑
i∈t (B f r )i = SD ,

pd , and ρ(B f r ) is computed using cloud analytics for different
previous mining actions. The overloading process is replaced
based on structure alteration in order to analyze further
rock fragmentation due to various mining services performed
through knowledge learning. Reverse engineering is applied
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Figure 11 Data analysis.

Figure 12 Overhead identification.

to identify cost overloading, and minimizing overhead relies
on Mp and CO estimation. The rock fragmentation in
mining poperations is analyzed in three dimensions for
restructuring through knowledge learning and deconstruction.
The lelve of rock fragmentation is consecutively measured
through the previous deconstruction process. Similarly, the
structure classification is determined with cloud analytics
in order to improve the replacement process depending on
other rock-fragmentation metrics. This enables the accurate
identification of the overload.

Cost Overhead
The cost overloads are identified in a 3D manner using

knowledge learning to reduce the overloading associated with
rock handling, and the transportantion of rock fragments.
Theprevious process deconstruction causing overhead in
mining operations is represented in Fig. 13. In this proposed
model, the structure detection, fragmentation level, and
cost handling analysis lead to less overhead. Knowledge
learning is used for replacing the overloading process using
deconstruction at different time intervals, and its loading
and unloading verification process is performed through a
learning process. The rock fragmentation process relies on
small structures in a 3D manner at the different instances
for computing Ld and Und . Cloud analytics is used for
identifying the particle size and structure classification in

any blasting operation in order to calculate the cost of
overloading. The mine blasting is analyzed according to three
dimensions using knowledge learning wherein the previous
mining operations are preceded using equations (3), (4),
(5), (6), (7), (8), (9), and (10) computations. Reverse
engineering depends on three fundamental features for further
deconstruction in this proposed method. Therefore, the
overhead is less than the other factors associated with rock
fragments.

Fragmentation Rate
In Fig. 14, the blasting fragmentation is identified with

cloud analytics in order to reduce the cost overloading in
mining operations by placing the small structure in that
process at different time intervals. The deconstruction process
minimizes overhead in rock handling in other instances.
Cloud analytics is used for structure detection, and the
fragmentation level from the previous mining operation
is replaced using the structure-altering method to identify
possible blasting sites in a region. This is done through
knowledge learning. The rock fragmentation rate is computed
with the last process deconstruction for the instance of ρ(CO )

and ρ(B f r ) analysis in blasting fragmentation. This overhead
is addressed and rectified using the reverse engineering
paradigm to achieve a high deconstruction process with
different dimensions, preventing cost overloading. Therefore,
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Figure 13 Cost overhead.

Figure 14 Fragmentation rate.

Table 1 Summary of structures.

Metrics ACO-BRT RFA-DL DEM-PSD 3DA-RE

Deconstruction Ratio 23.67 33.11 52.09 61.293
Data Analysis (Fragmentation/ Dimension) 0.42 0.533 0.662 0.7565

Overhead Identification 0.537 0.625 0.731 0.8094
Cost Overhead 0.309 0.258 0.166 0.0986

Fragmentation Rate 0.642 0.705 0.788 0.8687

Table 2 Summary of mining times.

Metrics ACO-BRT RFA-DL DEM-PSD 3DA-RE

Deconstruction Ratio 25.41 29.75 53.79 60.814
Data Analysis (Fragmentation/ Dimension) 0.411 0.522 0.642 0.7624

Overhead Identification 0.535 0.629 0.712 0.8108
Cost Overhead 0.305 0.235 0.154 0.0929

Fragmentation Rate 0.658 0.696 0.793 0.8625

further rock fragmentation and rock handling in mine blasting
sites are represented. In mines, blasting can achieve a high
breakage rate. The overhead is identified in the fragmentation
process, preventing high-cost overloading and rock handling
due to structure altering for further operations in blast muck
piles. In Tables 1 and 2, the above discussion is summarized.

The proposed method improves the deconstruction ratio,
data analysis, overhead identification, and fragmentation rate

by 12.5%, 10.91%, 8.92%, and 15.7%, respectively. The cost
overhead is decreased by 7.29%.

The proposed method improves the deconstruction ratio,
data analysis, overhead identification, and fragmentation rate
by 12.25%, 11.87%, 9.27%, and 14.68%, respectively. The
cost overhead is decreased by 6.92%.
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10. CONCLUDING REMARKS

This article introduced a three-dimensional analysis using
the reverse engineering paradigm that takes into account the
blasting demands and the associated cost. The proposed
method identifies the loading and unloading (handling) costs
for different levels of rock fragmentation. The deconstruction
and structure-detection processes are revisited by estimating
the levels using individual probabilities. Cloud data analysis
identifies overloads in fragmentation, structural analysis, and
blasting. The identified overlapping instances are verified
using similarity and likelihood features for improving the
reconstruction feature. Therefore, the precision of the
data analysis is improved, maximizing the deconstruction.
This deconstruction process is aided by learning from the
probability analysis of the various structures. The recurrent
process is utilized for consecutive mining and fragmentation
to identify overloading. Under the different systems, 2DA-
RE improves the deconstruction ratio, data analysis, overhead
identification, and fragmentation rate by 12.5%, 10.91%,
8.92%, and 15.7%, respectively. There is a 7.29% decrease
in overhead cost.
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