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In recent years, with the increasing amount of research being done in the machine vision field and other related areas, the visual servo control of
the robotic arm based on image information not only strengthens the diversity of information obtained by this device, but also expands its space,
cognition and adaptability. It also improves the robotic arm’s ability to make precise identifications and execute fine operations. Processing image
information and making good motion decisions are two of the skills that robotic arms need to master, as well as robotic arm vision. The image-based
visual servo system does not require camera calibration, and can complete the motion control of the robotic arm through the image information in the
camera plane. The control structure is relatively simple, so the current visual servo system has become a research focus. The online identification of
the image Jacobian matrix is also studied in order to obtain more accurate Jacobian matrix values in each iteration process of the image-based visual
servo control system. In this paper, two different control algorithms are proposed for visual servoing. These two algorithms are based on the Kalman
filter and neural network respectively, which can omit the image depth information required in the calculation of a visual servo system and reduce the
extra overhead. In response to this, this paper proposes a hybrid kernel online sequence extreme learning machine (MIXEDKOSELM) based on hybrid
kernel and online sequence learning. The correction of the error in the Kalman filter algorithm greatly improves the performance of the image-based
visual servo (IBVS) control system. This KF-MIXEDKOSELM-IBVS-based visual servo control method does not need camera parameters in the servo
process, and is more robust against disturbance errors and noise statistical errors. The training results and test results of the MIXEDKOSELM algorithm
on the abalone dataset were analyzed. It was concluded that the training results of two rbfs had MAE of 0.600 and TIMR of 11.12, and the test results
had MAE of 0.579 and TIMR of 0.467. By comparing with other algorithms, it can be shown that the two rbf structures of the MIXEDKOSELM algorithm
had obvious advantages in the testing process compared with other algorithms.
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1. INTRODUCTION

Since the birth of robots at the beginning of the last century,
robots and robotics have been developing at a very fast
pace. Today’s robots have appeared in many aspects of
people’s daily lives; from aerospace equipment to household
appliances, intelligent robots can be seen everywhere. Fields
such as aerospace, deep-sea exploration, and field work have
become a reality with the advent of robots. People no longer
have to risk their lives to do certain jobs since many tasks can
now be performed by robots. Robots stand guard, robots can
sell tickets, etc. and have greatly liberated people from doing
boring and repetitive work, allowing employees to do more
meaningful tasks. Home sweepers and smart housekeepers
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are indispensable for office workers in today’s cities. Some
service robots can take good care of elderly or disabled people,
in some cases eliminating potential human-safety hazards,and
so on. Countless robots have appeared in many aspects of our
lives. It is the urgent demand for robots that has prompted a
large number of scholars to undertake robotics research [1].

Humans dream of creating robots with human-like intel-
ligence to replace human labor. A robot is a human-like
machine. Humans obtain much of their information through
the eyes, and a small part is obtained by touch, hearing, taste,
etc. The image Jacobian matrix can be changed to achieve the
mapping relationship between robot joint angles and image
feature errors. The calculation of the image Jacobian matrix
is very important, and this calculation must be completed
in a short time, so the representation of the image Jacobian
matrix should be as simple as possible. At the same time,
the calculation of the Jacobian matrix is also closely related
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to the depth of the feature points of an image, and it is
quite difficult to obtain the depth information. Therefore,
using the Jacobian matrix online recognition method based
on Kalman filter, this paper applies the neural-network-related
algorithm to the problem of identifying the Jacobian matrix of
the image, which can significantly improve the robustness of
IBVS. At the same time, because the neural network used is an
improved algorithm of the extreme learning machine (ELM),
the real-time performance of the system can basically meet
the requirements. The manipulator is controlled in real time
by using the image Jacobian matrix model recognized online
in order to track a target [2].

Machine vision is becoming extremely important for
robots, and research in this area is increasing. For instance,
Hsieh [3] proposed a stereo vision robotic arm assistance
system in which the robotic arm can perform fifth-degree
capture in a single instance. The proposed stereo vision-
based robotic arm system enables users to manipulate objects
according to the robot’s ability to target objects using
computer vision. Stereo vision systems compute parameters
by paying attention to the true position of the instance in the
coordinate system. Xie [4] developed an acupuncture-assisted
robotic arm that can perform acupoint measurement and
acupoint click massage. The abdominal acupuncture auxiliary
robotic arm uses a single-chip microcomputer control board
to control the three-axis large stepping motor arm. The
reference point judgment is realized based on machine vision,
and infrared auxiliary markers are used. Zhong [5] proposed
a practical visual servo control using a spherical projection
model. The aerial manipulator is a UAV equipped with a
robotic arm, which greatly increases the degree of freedom
and operational flexibility of the end effector. In order to
further improve the grasping performance, a task-priority
control scheme was adopted, with one main task and several
sub-tasks: the control of the position and orientation of the
gripper, the vertical alignment of the center of gravity, and
the avoidance of joint constraints. DiPierro [6] built a single-
page web application that could connect to the camera and
process the video stream. Images can also be extracted
and motion detected. It then uses the detected motion to
control a 3D robotic arm rendered with webGL on the same
page. Yang [7] reported the development of an intelligent
shared control system for robotic manipulators commanded
by the user’s mind. From the analysis of the invoked EEG
signals, a brain-computer interface was developed to infer
the exact object required by the user. These results are then
transferred to a shared control system which enables precise
object manipulation through visual servoing.

Determining the position and size of objects by various
means is important to ensuring the accurate grasping and
operation of the robotic arm. Hence, Qu [8] developed a
vision-based dual-arm circular motion method that addressed
the problem of uncertain position when grasping objects and
the phenomenon of dual-arm joint angle drift. A novel
cascaded control structure was proposed that associates an
adaptive neural network with kinematic redundancy optimiza-
tion. Zapotezny-Anderson [9] introduced a deep learning
approach whereby Deep-3DMTS can guide the end-effector
of a robotic arm to improve the field of view of occluded
fruits (bell peppers) when performance is comparable to that

of a standard 3DMTS baseline. The final position of the end
effector was within 11.4 mm of the baseline; compared to
the baseline of 16.8 (average), the fruit size in the image
was increased by a factor of 17.8. Qiu [10] proposed a
visual servo tracking strategy for wheeled mobile robots,
which can simultaneously identify unknown feature depth
information during the visual servo process. By using the
reference image, the desired image and the current image,
the systematic error was constructed from the measurable
signal obtained by decomposing the Euclidean homography.
Cheng [11] was the first to implement a visual servo
control on a magnetically-anchored endoscope. Designed
for single-port thoracoscopic surgery, the new magnetic drive
endoscope is compact and has a working space close to
the chest wall for space-constrained procedures. The visual
servo control allows magnetic endoscopes to automatically
track surgical instruments. Tsai [12] presented the first
derivation, implementation and experimental verification of
visual servoing based on light field images. The derived
light field image Jacobian matrix is based on a compact light
field feature representation that is close to the form directly
measured by light field cameras. It is necessary not only to
achieve optimality in the image plane, but also to achieve
optimal trajectories in space.

The innovation of this paper is that in EEMD-RVFL-
IBVS, the inverse of the initialized Jacobian matrix and the
combination of EEMD-RVFL are used to replace the inverse
image Jacobian matrix. This method considers not only the
coordinates of the feature points in the camera plane, but also
the error of the image feature points. In fact, the dimension of
the input vector is expanded so that the input vector has more
information. The advantage of this is that it can better fit the
image Jacobian matrix.

2. ROBOTIC ARM VISUAL SERVO

2.1 Composition and Classification of
Visual Servo

In the related research field of visual servo manipulator
control, there are many ways to classify it, but the standards
are not the same. According to the current widely-recognized
classification, the categories are: classification according to
the installation position and number of cameras; classification
according to the type of visual feedback information; and
classification according to whether the internal and external
parameters of the camera have been determined [13].

In the visual servo system, the camera acts as the
eyes of the robot. It transmits the observed data to the
computer by observing the outside, and then generates useful
information by means of computer processing. In cases where
visual information needs to be very precise, CCD industrial
cameras are generally used as visual sensors. Under normal
circumstances, the scene’s information generally includes the
position, attitude of the target or the point, line and area
features of the target [14]. The number of cameras to be
used and their placement is an important issue because the
greater the number of cameras, the more will be the amount
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Figure 1 IBVS control structure.

Figure 2 The look-then-move principle.

of information obtained. If the camera is placed properly, a
very good shooting effect can be obtained. Conversely, if the
camera is placed incorrectly or the information provided by
the camera is insufficient, the visual servo will fail.

A system with more than two cameras in a visual servo
system is generally referred to as a “multi-eye” visual servo
system. The multi-eye visual servo system can observe
different parts of the target according to the needs, so
it can obtain enough rich information. However, it has
greater computational complexity, the control system design
is difficult and the cost is high, so it cannot be applied to
industrial practice [15]. Therefore, in practical applications,
people usually choose a simpler and lower-cost monocular
system or a binocular system. The IBVS control structure is
shown in Figure 1.

It can be seen from Figure 1 that the eye-in-hand visual
servo system can achieve precise positioning and tracking of
characteristic targets. However, it is worth mentioning that
this configuration can be applied only to scenes with small
workspaces, and the application field is relatively limited. On
the other hand, the camera in this configuration cannot observe

the robotic arm itself. So, when the robotic arm moves,
accidents such as collisions are likely to occur, resulting in
damage to the robotic arm [16]. In addition, this configuration
is highly susceptible to calibration and kinematic errors [17].
Conversely, a configuration that separates the camera and
robot and places them separately is called a “fixed-eye”
system. With this configuration, the entire work scene can
be comprehensively observed and sufficient environmental
information can be obtained. However, there is a disadvantage
that must be pointed out: the camera movement is likely to
occlude the feature target and make the visual servoing fail.

The “see first, then move” method is a control method
that separates the vision of the robotic arm and the motion
of the robotic arm into two independent processes, as shown
in Figure 2.

It can be seen from Figure 2 that in the control process,
the visual camera first detects the target and obtains the target
information. Then, according to this information, it selects
the representative target features, which is conducive to the
identification of the target. Finally, it calculates the three-
dimensional pose of the target according to the calibrated
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Figure 3 Visual servo double closed-loop control algorithm structure.

camera and the characteristics of the target. So far, this is
the task that the entire vision system is responsible for in one
movement of the robotic arm [18]. It performs path planning
and controls the movement of the robotic arm. During this
movement, the vision system no longer detects the target,
which is equivalent to open-loop control.

This control method links the vision system of the robotic
arm with the motion system. The amount of control
is calculated after external information has been acquired
through vision, and the changes in visual information during
the movement are fed back in time to update the control
amount in time [19]. Therefore, this control method can detect
whether there is an error in the visual system or an error in the
movement process, thereby ensuring the accuracy of the entire
control process. In addition, the visual control system is no
longer limited to relying only on accurate camera calibration,
and the mapping relationship can be updated during the
movement process. In this way, the adaptability of the robotic
arm to the environment is improved, and the autonomous
control capability of the robotic arm is greatly improved,
which can eliminate the need for manual operations to a great
extent. Therefore, this control method has been widely used
in practical situations. However, the “look-and-move” control
method also has problems. The most critical problem is how
to use the image features to establish a relationship with the
motion control of the robotic arm. In addition, since real-time
feedback is required during the movement, this relationship
requires real-time, updated calculations. How to ensure the
speed and accuracy of the update process is also one of the
problems [20]. Therefore, the later research on visual servoing
is often based on the “look-and-move” control method,and the
algorithm research and optimization are carried out on each
link, especially in terms of the relationship between vision
and motion.

2.2 Double Closed-Loop Control Method for
Visual Servoing Considering Image
Occlusion/Interference Filtering

In this section, the visual servoing of the robotic arm based on
the eye-in-hand structure adopts the look-and-move structure
to track and control the image features. The control structure
is shown in Figure 3.

It can be seen from Figure 3 that for the controller, a
double-loop structure including a vision controller and a
joint controller is adopted. The vision controller is set
in the external control loop through the hand-eye camera
according to the image-based visual servo method. As an
inner loop controller, an adaptive sliding mode controller for
joint angular position control is derived. By means of the
ASMC algorithm, the internal joint controller improves the
robustness of the tracking of the robotic arm.

First, it is determined whether occlusion/interference
occurs according to the image feature information captured
by the camera. Using the position information of the image
features, the ASTKF algorithm deals with the noise and
interference, and data closer to the real image is obtained and
introduced into the control law [21].

Second, each element of the image Jacobian matrix is
taken as input, and the system state is estimated online to
obtain the characteristic Jacobian matrix, which mitigates its
vulnerability to external noise and uncertainty.

Finally, the inner loop control adopts the ASMC algorithm
to control the position error of the manipulator joints. The
robot arm is driven from the initial position to the desired
position by the PD-SMC algorithm, and the outer loop control
of the visual servo system is performed. Therefore, the
occlusion/interference prediction and the online estimation of
the image Jacobian matrix are achieved by ASTKF using the
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Figure 4 Execution flowchart of QuaRC2.3.

Figure 5 EEMD-RVFL-IBVS system structure.

image feature information, and a double closed-loop control
strategy is proposed to realize the tracking control of the visual
servo system of the manipulator [22].

2.3 Experimental Platform

The execution flow of QuaRC2.3 of the 6-DOF DENSO open-
architecture robot system produced by the company is shown
in Figure 4.

As shown in Figure 4, QuaRC2.3 is a multi-functional rapid
control development environment developed by Quanser,
which seamlessly integrates Simulink. The Quanser open
architecture control module features six amplifiers with
built-in FF (feedforward) and PID (proportional, integral,
derivative) controllers. The controller runs on each motor
at a rate of 1kHz. The QUARC2.3 block set has access to
all the gains of the built-in controller, and these blocks also
have direct access to the amplifier current commands in the
block. Users can either tune the built-in controller gain of
the QUARC2.3 interface or design their own controller in the
Simulink environment and directly command the amplifier
current in a completely open architecture [23]. In fully open-
architecture mode, a user-defined current is sent directly to
the motor, allowing the operator to design a stable feedback
system.

2.4 Calibration-Free Visual Servo System
Based on eemd-rvfl

Empirical Mode Decomposition (EMD) is a new adaptive
signal time-frequency processing method, which is suitable

for the analysis and processing of nonlinear and non-stationary
signals. It is a major breakthrough in Fourier transform-based
linear and steady-state spectral analysis.

The signal is decomposed by EEMD, and then an EEMD-
RVFL algorithm is formed by using the prediction function
of the RVFL network. In the process of identifying the
Jacobian matrix of the robot arm with this algorithm online,
the EEMD-RVFL-IBVS algorithm is formed. Since EEMD
can decompose the signal containing noise, it can better filter
the noise in IBVS. The IBVS structure based on EEMD-RVFL
is shown in Figure 5.

In Figure 5, S∗ and S represent the expected coordinates of
the spatial feature points on the camera plane and the current
image feature coordinates, respectively. aS represents the
image feature error during each iteration. aU represents the
change amount of the manipulator joint in the current iteration
process, and U and U∗ represent the current joint angle of the
manipulator and the joint angle of the previous moment. The
value of K is obtained with Formula (1).

K = aS · aU−1 (1)

In this model, the mapping relationship between the
changes of the joints of the manipulator and the changes
of the image features in each iteration process is shown in
Formula (2).

aU = fEMMD−RVFL(S, K −1 · aS) (2)

This visual servo control method does not need to solve the
inverse of the matrix every time during the iterative process,
avoiding the singularity problem. At the same time, it is not
necessary to iteratively update J every time, and the system
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structure is relatively simple. Moreover, EEMD-RVFL has
a certain filtering effect, so the mapping relationship of this
image Jacobian matrix performs well in IBVS.

First, the purpose of IBVS control is to control the end
effector of the manipulator from the current pose to the desired
pose by minimizing the difference between the current feature
and the desired feature of the image. That is, to minimize the
error ks(i), the error is defined as follows:

ks(i) = S(pt (i), a) − S∗ (3)

In the IBVS method, the linear mapping relationship
between the image feature vector and the camera speed is
as Formula (4):

•
S = Lsα (4)

In Formula (4), Lk ∈ Rn×6 is called the interaction matrix

with S, and
•
S is the time derivative of the image feature. α is

the speed of the camera.

k(i) = Lkα (5)

Of these,
α = −βL+

k K (6)

In a real visual servo system, it is actually impossible to
really know Lk or L+

k . Therefore, one needs to obtain an
approximation or estimate of L+

k for one of these two matrices,
then:

α = −β L̂+
k k = −β L̂+

k (S − S∗) (7)

It is assumed that the robotic arm has m DOF, and that the
camera is fixed on the robotic arm end effector with the same
pose as the end effector. The joint angle of the manipulator
is d = [da, . . . dm]T , then the relationship between the joint
speed d∗ = [d∗

2 , . . . d∗
m]T and the end effector speed α is as

follows:
α = J (d)d∗ (8)

The relationship between the rate of change of the image
feature error and the joint speed of the manipulator is as
Formula (9):

S∗ = Jd · d∗ (9)

According to formulas (7), (8) and (9), the joint speed
controller of the manipulator can be redefined as:

d∗ = β J+
d k (10)

From Formula (9), it can be known that:

J (d) =
[
∂S

∂d

]
(11)

The precise calculation of the image Jacobian matrix is a key
issue in IBVS control. The Kalman filter is an optimal linear
state estimation algorithm in the environment of independent
white Gaussian noise. The two algorithms are:

Yn+1/n = EYn/n + Mn (12)

Zn+1 = Hn+1Yn+1/n + Vn+1 (13)

Yn/n is the state vector of the robotic system, so:

Yn/n = [ j11, j12, . . . , jtm]T
(t•m)×1 (14)

In the observation model Formula (13), Zn+1 ∈ Rt is the
observation quantity of the system at the current moment,
which is mainly given by the following formula:

Zn+1 = Sn+1 − Sn = Jd · q(n) (15)

From this, the observation matrix Hn+1 can be obtained
with:

Hn+1 =
[

d∗(n)N

0
0

d∗(n)N

]
m×(t∗m)

(16)

According to the state model Formula (12) and the obser-
vation model Formula (13), and according to the Kalman-
Bacy filtering algorithm, the following recursive estimation is
established:

Prediction steps:

Yn+1/n = EYn/n (17)

Pn+1/n = Hn Pn/n Hn + Dn (18)

Update steps:

Kn+1 = Pn+1/n H N
n+1(Hn+1 Pn+1/n H N

n+1 + Rn+1)
−1

(19)

Yn+1/n+1 = Yn+1/n + Kn+1(Zn+1 − Hn+1Yn+1/n) (20)

Pn+1/n+1 = (E − Kn+1 Hn+1)Pn+1/n (21)

Of these, Dn and Rn+1 are the process noise and observation
noise covariance matrix, respectively. From the prediction
step and the update step, it can be seen that the simple KF-
based image Jacobian matrix online identification algorithm
has obvious defects, which requires the process noise and
observation noise to be Gaussian white noise. However, in
the real environment, the KF algorithm is very sensitive to the
statistical characteristics of the noise generated in the robot
operation, and the noise introduced by the vision sensor is not
simple Gaussian white noise.

3. EXPERIMENTS RELATED TO VISUAL
SERVOING OF ROBOTIC ARMS

3.1 Hybrid Visual Servo

Image-based visual servoing takes the image feature error as
the system reference input, so it is called “2D visual servoing”.
This method acts directly on the image feature space, so the
control algorithm can ensure that the image features converge
to the desired position with a specific trajectory, but it cannot
guarantee the optimal trajectory in the Cartesian space. A
typical problem is the camera rollback phenomenon. The
position-based visual servo control takes the Cartesian space
velocity as the system reference input, and the control acts on
the working space of the manipulator instead of the image
feature space. In the initial stage of some specific visual
servoing tasks, the movement trajectory of the end of the
robotic arm in a certain direction is first away from the
target position for a distance, and then approaching the target
position, which is called the “camera back-off phenomenon”,
as shown in Figure 6.
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Figure 6 Camera rollback phenomenon and the Chaumette.

Figure 7 Image-based viper850 visual servo simulation.

It can be seen from Figure 6 that for small amplitude
movements, this phenomenon is not obvious. However, this
phenomenon is particularly serious for large-scale motion,
especially when there is a rotational motion around the X-axis.
It can be seen from Figure 6(a) that Chaumette Conundrum
requires the feature point of the image plane to rotate 180
degrees around the center point. In theory, this task can
be accomplished as long as the camera rotates 180 degrees
around the X axis. However, in the actual image-based visual
servoing system, according to the proportional control law,the
image feature points would converge to the desired feature
points along the gradient direction, that is, the direction of
the blue line arrow. When the feature points coincide at the
center, the image Jacobian matrix appears singular, resulting

in visual servo failure. It can be seen from Figure 6 (b)
that the camera would retreat to infinity along the Y-axis
direction.

3.2 Visual Servo Control Simulation of
viper850 Manipulator Based on Image

The Viper850 visual servo simulation of the image is shown
in Figure 7.

Figure 7 depicts the visual servo simulation effect diagram
of the Viper850 manipulator based on the image when the
scale factor is 0.5. Figure 7(a) is the change curve of the image
features, and Figure 7(b) is the change curve of the camera
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Figure 8 Simulation of visual servo control based on adaptive gain.

Figure 9 Visual servo rendering of viper850 robotic arm based on hybrid visual servoing.

shooting speed. The manipulator converges to the desired
position at 3.40s. The image-based Viper850 visual servo
simulation shown in Figure 7 considers the introduction of
an adaptive gain algorithm for the above-mentioned possible
robotic arm tremors. A larger scale factor is used at the
beginning of the control, and this is gradually decreased as
the manipulator gets closer to the desired position. A typical
approach is to make the scale factor decay exponentially with
time.

The visual servo control simulation is shown in Figure 8.
Figure 8 is a data analysis diagram of the simulation effect

of visual servo control based on adaptive gain. Figure 8(a)
is an image feature (pixel) map, and Figure 8(b) is a graph
of the camera speed curve. The manipulator converges to

the desired position in 1.66s, which is faster than with fixed
gains.

3.3 Viper850 Robot Arm Hybrid Vision
Servo Simulation

The visual servo effect of the Viper850 robotic arm of the
hybrid visual servo is shown in Figure 9.

Figure 9(a) is a hybrid visual servo simulation of a robotic
arm using extended image features. Figure 9(b) is the control
effect diagram of the Viper850 robotic arm. The algorithm
can make the manipulator converge to the desired position
in 1.43s.
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Table 1 UCI dataset.

data set Number of samples input feature dimension

abalone 4000 7
fried 25000 8
wine 1600 10

machine_cpu 300 9
puma8NH 8000 7

Table 2 Results of various ELM algorithms on the abalone dataset.

algorithm activation function training results test results

MAE TIMR(s) MAE TIMR(s)

ELM
sig(L = 50) 0.0579 0.0016 0.0579 0.0003
sin(L = 50) 0.0619 0.0013 0.0629 0.0003

OSRLM
sig(L = 20) 0.0587 0.0553 0.0599 0.0008
sin(L = 50) 0.0601 0.0511 0.0611 0.0005

MXEDKOSELM
rbf + rbf 0.0600 11.12 0.0579 0.0467

rbf + poly 0.0609 13.01 0.0611 0.0304

Table 3 Results of various ELM algorithms on the Fried dataset.

algorithm activation function training results test results

MAE TIMR(s) MAE TIMR(s)

ELM
sig(L = 50) 0.0629 0.0911 0.0619 0.0086
sin(L = 50) 0.0978 0.0889 0.1269 0.0081

OSRLM
sig(L = 20) 0.0621 1.0921 0.0637 0.0087
sin(L = 50) 0.0964 1.1062 0.0981 0.0093

MXEDKOSELM
rbf + rbf 0.0626 75.75 0.0379 0.6670

rbf + poly 0.0674 93.12 0.0660 0.7289

3.4 MIXEDKOSELM Algorithm
Performance

First, in order to test the stability and accuracy of the
MIXEDKOSELM algorithm proposed in this chapter, the
MIXEDKOSELM algorithm is compared with several exist-
ing common ELM algorithms. The UCI dataset is shown in
Table 1.

It can be seen from Table 1 that for testing the performance
of various algorithms, 70% of the samples were used as the
training set, and 30% were used as the test set. Also, each
algorithm was tested 20 times on each dataset, and the average
of the 20 results was used to determine the final training
accuracy. The three types of errors are defined as shown in
the following formulas:

MAE = 1

N

N∑
t=1

|xt − x̂t | (22)

RMSE =
√√√√ 1

N

N∑
t=1

(yt − ŷt )2 (23)

MAPE = 1

N

N∑
t=1

∣∣∣∣ xt − x̂t

xt

∣∣∣∣ × 100% (24)

For the comparison between the MIXEDKOSELM algo-
rithm and other more common ELM algorithms, the objects

being compared were ELM and OSELM. Then, different
algorithms were trained with different datasets respectively.
The results are shown in Table 2.

For the purpose of comparison, Table 2 shows the training
results and test results obtained after testing various algorithms
on the abalone dataset. The two results are compared in terms
of MAE and TIME respectively. It can be seen from Table
2 that ELM still maintains the minimum value in terms of
training time and test time. Since ELM randomly generates
input layer weights and hidden layer biases, it has a great
advantage in regard to time. However, in terms of accuracy,
the proposed MIXEDKOSELM algorithm performs well,
especially during the testing process. Hence, the structure
of the two rbf cores has obvious advantages. In addition
to the slowness in terms of time, the other three values are
lower, indicating that the MIXEDKOSELM algorithm has
better fitting and scalability, as shown in Table 3.

Table 3 presents the results of the three algorithms used on
the Fried dataset. Similar to Table 2, the training results and
the test results are given, but unlike Table 2, the comparison
between the KELM and MIXEDKELM algorithms is not
given. This is because the Fried dataset is too large, and
KELM needs to calculate the value of the kernel function. At
this time, the multiplication operation of two matrices of size
30400*30400 needs to be performed, and the memory of the
computer used in the experiment is only 8Gb, which cannot
be directly calculated. Therefore, this experimental result is
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Table 4 Comparison results of three ELM algorithms on the visual servo dataset.

algorithm activation function training results test results

MAE TIMR(s) MAE TIMR(s)

ELM
sig(L = 50) 0.0161 0.0024 0.0990 0.0005
sin(L = 50) 0.0175 0.0022 0.0481 0.0005

OSRLM
sig(L = 20) 0.0161 0.0370 0.0568 0.0012
sin(L = 50) 0.0415 0.0299 0.0671 0.0004

MXEDKOSELM
rbf + rbf 0.0399 6.1211 0.0482 0.2471

rbf + poly 0.0616 9.9096 0.0611 0.3011

not compared with that of the simple KELM algorithm. It can
be seen from Table 3 that the MIXEDKOSELM algorithm has
good performance on the Fried dataset. The algorithms are
very stable in terms of accuracy. Although the performance
in terms of time is not excellent, the system performs better
in terms of accuracy.

3.5 Comparison of MIXEDKOSELM
Algorithm and Other ELM
Algorithms on Visual Servo Datasets

To test the applicability of the proposed algorithm in IBVS,
1000 sets of data are collected during the Kalman filtering
process. The input is a vector consisting of the Kalman filter
gain error, state estimation error and observation error, and
the output is a vector representation of the Jacobian matrix.
In this process, the input dimension is 440 and the output
dimension is 48. Several algorithms are compared with
the MIXEDKOSELM algorithm. The results are shown in
Table 4.

It can be seen from Table 4 that the data sets collected
during the Kalman filtering process perform differently in
terms of the three comparison algorithms mentioned above.
The MIXEDKOSELM proposed in this paper outperforms
other algorithms in the testing process, especially in the
configuration of two rbf kernel functions. Therefore,
the MIXEDKOSELM algorithm in the subsequent KF-
MIXEDKOSELM-IBVS algorithm adopts this configuration.

4. CONCLUSIONS

In today’s society, robots play a role that cannot be
underestimated. More and more intelligent robots appear
in daily life, liberating people from tasks that are either
or boring. Vision is the most important means by which
robots perceive the real world, so the research of robotic
arms based on image features is a very hot topic. This paper
focused on the study of a visual servo system based on image
features, and proposed two visual control algorithms, which
are based on Kalman filter and neural network respectively.
Due to the introduction of Kalman filtering and neural
network methods, the calculation of depth information in
IBVS can be omitted, reducing equipment and additional
overhead. The KF-MIXEDKOSELM-IBVS was formed
using MIXEDKOSELM in the Kalman filtering process. This

algorithm can compensate for the error caused by the Kalman
filter. It can be seen from the experimental results that
this IBVS control algorithm has good robustness, and the
experimental accuracy is greatly improved. In this paper, the
neural network was used to fit the image Jacobian matrix, and
the RVFL algorithm was used to train the neural network.
Before the input of RVFL, the method of ensemble empirical
mode decomposition was added to decompose the complex
signal containing noise information into several sub-signals,
and then these signals were used as the input of RVFL to train
the neural network.

For a monocular visual servo system, the acquisition
of depth information is far more difficult than the camera
parameters that can be estimated by a one-time algorithm, and
its real-time requirements are greater. In the visual servoing
process, the depth information was set as a constant in this
paper. When the difference between the constant and the
actual depth information is small, the influence on the servo
system is small; on the contrary, if the difference is large, this
causes a large lag in the vision system. In addition, depth
information can be estimated online by means of machine
vision technology, or through the image features and motion
information of the robotic arm. The acquisition of depth
information is a problem requiring in-depth discussion in the
field of robotic arm visual servoing.
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