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At present, with the rapid development of medical and health undertakings in China, the quality of the results measured by spectrophotometer is
improving although the traditional spectrophotometer measurement process is easily disturbed by the stray light noise in the external environment.
Therefore, in this study, the LMS (least mean square) adaptive filter is used as the noise filtering device, and PWM (pulse width modulation) is used to
collect the original optical signal, and an improved stray light noise filtering algorithm of spectrophotometer is constructed. The test data shows that
the average output amplitude of high-level signals after the denoising processing of L-P algorithm, OLS algorithm and LMS algorithm is 1.996. The
relative errors of the three algorithms are 0.17%, 1.86% and 0.92% respectively. The L-P algorithm, OLS algorithm, and LMS algorithm denoised the
average output amplitude of the low-level signal at 0.000, 0.002, and -0.001, respectively, and the relative errors of the three are 11.41%, 16.95%,
and 13.88%, respectively. It shows that the proposed stray light denoising algorithm can extract the stray light in the spectrophotometer to a greater
extent than the traditional denoising algorithm, and output a purer useful signal, making it very applicable in fields such as accounting and protein
quantification.
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1. INTRODUCTION

The spectrophotometer can quantitatively and qualitatively
analyze the light absorption properties of the substance
being tested. Currently, the spectrophotometer is being used
in a number of diverse industries and sectors, particularly
those that require precise measurements such asbiology,
medical care, physics and other disciplines that may involve
microbial component identification, tumor detection, outer
space exploration, etc. [1, 2]. This is precisely because the
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operating accuracy of spectrophotometers in all walks of life
is improving day by day. However, the incident light intensity
and the transmitted light intensity input by the instrument
are easily disruptedby stray light noise, thereby reducing the
accuracy of measurement results. Two methods can be used
to deal with the stray light interference: hardware suppression
and software correction. The former is achieved by grinding
and coating some key components of the spectrophotometer
to reduce the sensitivity of the instrument to stray light. The
purpose of noise reduction, which is more related to the
process, is not discussed in this study. When software is used
to correct stray light noise, firstly, the optical characteristics
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of stray lightare analyzed, and then modeled and simulated
so that most of the stray light noise signal is canceled
by the analog signal in the input signal [3]. Currently,
the commonly-used stray light denoising algorithms on the
market include recursive least squares algorithm, least mean
square algorithm, etc., but the denoising effect of these
algorithms is still unsatisfactory in some application scenarios
with high precision requirements. Therefore, in this study, a
stray light denoising method with higher denoising abilityis
proposed to deal with the spectrophotometer’s stray light
problem.

2. RELATED WORKS

Previous researchers have carried out extensive academic
research on the accurate measurement of spectrophotometer
and optical signal denoising, which also has certain reference
significance for this research. Some of these research studies
are described below. Pozzobon et al. proposed an intelligent
algorithm for the design of a spectrophotometric equation to
predict the concentration of nitrate and nitrite in experimental
samples of algae. The test results showed that the optical
signal of microalgae culture samples collected by the spec-
trophotometer using this algorithm is more accurate [4]. In
order to meet the requirements of non-invasive in-vivo spectral
analysis, a research team developed a new spectrophotometer
to measure the composition changes of main reactants in the
redox reaction of plastid cyanin and ferredoxin in vivo. The
test results showed that the measurements obtained by this new
spectrophotometer wereless susceptible to interference from
environmental stray light [5]. Matinrad et al. constructed a
spectrophotometer with asmart phone application platform.
The spectrophotometer integrates simple optical facilities –
a tungsten filament lamp as a light source and an electronic
multi-functional optical disc -and uses the two as reflection
diffraction gratings to study the error source of the smart phone
spectrophotometer. An analysis of the optical signal data
collected by the spectrophotometer found that the proportional
error of heteroscedasticity noise is the most important source
of the error and structural change of optical equipment [6].
Dixit compared a mini spectrophotometer with a desktop vis
NIR instrument in the spectral range of 900-1700 nm to predict
the intramuscular fat (IMF) content of frozen and ground lamb.
The prediction results show that the micro spectrophotometer
has higher detection accuracy for the intramuscular fat content
of the lyophilized and minced lamb meat [7]. Ryan and
Mary designed a 3D printable spectrophotometer with dual
beam characteristics allowing different types of samples to
be collected on the same photo, thereby improving the signal
quality and reproducibility of the spectrum [8]. Kuznetsova
et al. found that the spectrum of multicolor white visual
stimulation partially overlaps the emission spectrum of the
indicator, resulting in serious interference with the calcium
signal. However, ablue visual stimulation can effectively
avoid this problem and improve the detection accuracy of
the calcium signal [9]. Clermont’s research team found that
stray light is the main factor limiting the performance of
optical instruments, and accurate simulation of stray light

signals needs to send a sufficient amount of light; however,
the simulation of stray light can be very time-consuming. The
research team proposed the concept of sending incident stray
light into the pupil, and designed a new denoising algorithm
based on this idea. The test results show that the denoising
operation time of this algorithm is 20% less than that of
the traditional algorithm [10]. Hu established a polarization
scanning turbidimeter to measure the characteristics of aerosol
components in the air, and introduced a new type of a multi
hollow-cone optical trap tosuppress backscattered stray light.
In order to assess the effectiveness of the turbidimeter, a
simulation experiment was designed to compare and analyze
the denoising effect of the simulation model with and without
the optical trap. The experimental results showed that the
percentage of backscattered stray light of some particles can
exceed 50% without an optical trap. Using an optical trap
component comprising several hollow cones, the amount of
stray light in the backscattering angle can be reduced to
less than 0.7%, and it can be stable at different angles. It
shows that this structure is particularly suitable for optical
wells with relatively large apertures but insufficient space
[11]. In order to mitigate the influence of stray light in
the transmission device on the accuracy of the measuring
instrument, apolarization isolation single-station system was
designed by Yang et al. It uses the polarization isolation
principle to isolate stray light. In order to maintain a
relatively large scanning angle, the stray light generated by
the transmission process is removed. The imaging results
of the experiment showed that this method can effectively
address the issue of imaging quality of the 1.5 μM laser multi-
dimensional vision system that is affected by stray light [12].

To sum up, several technical talents and researchers have
carried out studies and experimented with various ideas so as
to deal with the influence of stray light on the measurement
accuracy of spectrophotometers, aiming to design improved
denoising algorithms or adjust and optimize the physical
structure of a spectrophotometer. However, these improved
methods have limited ability to cope with the time-varying
characteristics of stray light, and do not take into account
the fact that the distribution characteristics of stray light may
vary with the change of wavelength, resulting in a sometimes
unsatisfactory denoising effect. Therefore, it is necessary to
design a stray light denoising method with better denoising
effect and universality.

3. ANTI-STRAY LIGHT NOISE
ALGORITHM DESIGN OF
SPECTROPHOTOMETER
INTEGRATING PWM AND LMS

3.1 LMS Method and Model Design of
Adaptive Noise Canceller

In this study, the LMS and PWM methods and the adaptive
noise canceller model that constitute the hybrid spectropho-
tometer anti stray light noise algorithm are designed first,
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Figure 1 Schematic diagram of a typical structure of an adaptive predictor.

Figure 2 Schematic diagram of the structure of the adaptive noise canceller.

Figure 3 Adaptive Transverse Filter Model.

the predictor is structured horizontally. The predictor works
by using the useful signal and the adaptive optimal weight
coefficient to predict the semaphore of the signal at the next
moment. Another common adaptive filter is the adaptive noise
canceller; its calculation model is shown in Fig. 2.

Fig. 2 shows that the working principle of the noise
canceller: the noise signal and the useful signal are superposed
to form a noisy signal, and the signal to be processed is input to
the adaptive filter. After the filter parameters are adjusted, the
filter outputs the closest estimated value of the noise signal,
and then the estimated value of the noise signal is subtracted
from the noisy signal in order to cancel the noise interference
to a certain extent, so that the residual signal is as close to the
useful signal as possible.

The least mean square algorithm (LMS) is an adaptive
filtering algorithm with a simple calculation process and wide
range of applications. The core of its calculation logic is to
use LMS to adjust the weight coefficient of the input signal
so that the square between the data to be processed and the
filtered signal is as small as possible [17]. This algorithm
has the advantages of fast convergence speed, few calculation
parameters and simple principle. Therefore, LMS was chosen
for the construction of an anti-interference algorithm for a
spectrophotometer [18]. The transverse filter structure is
shown in Fig. 3.

and then they are combined to create the final stray light 
noise removal algorithm [13, 14]. The adaptive filter can 
quickly achieve better filtering effect when the input data 
parameters are unknown, and has the advantages of simple 
calculation logic and small calculation amount. Therefore, 
it is used to process real-time signals [15]. The most 
important thing is that the adaptive filter can be combined 
with other adaptive algorithms to further improve the filtering 
performance. Therefore, the spectrophotometer anti stray 
light noise algorithm designed in this study will be based on 
the adaptive filter [16]. The following two common adaptive 
filters are analyzed to prepare for the subsequent design of 
LMS adaptive filters.

The adaptive predictor is designed based on the adaptive 
filter. Its core calculation logic is to appropriately delay 
the useful signal, and take it as the data to be processed 
by the filtering device to obtain the best estimation by the 
adaptive parameter adjustment method, and take it as the fixed 
parameter of the prediction filter. The system structure of the 
adaptive predictor is shown in Fig. 1.

Fig. 1 shows the time-delayed signal of the s(n − N) 
input s(n) signal that can also be understood as s(n) the  
predicted output of the signal, which is input to the adaptive 
filter to obtain filtered data y(n), and the residual signal is 
obtained through comparison and calculation e(n). Usually,
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The transversal filter shown in Fig. 3 above designs an LMS
algorithm suitable for spectrophotometer denoising. The
weight parameter in the filter � (n) = [�1(n),�2(n), . . . ,
�M−1(n)]T , the input signal vector x(n) = [χ(n), χ(n −
1), . . . , χ(n−M+1)]T , the output signal y(n) can be obtained
according to Formula (1).

y(n) = � T (n) ∗ x(n) =
M−1∑

i=0

�i (n)x(n − i ) (1)

In Formula (1), n is the sequence length, which M
represents the order. The residual signal of the filter can
be obtained by Formula (1), and e(n) is calculated with
Formula (2).

e(n) = d(n) − y(n) = d(n) − � T (n) ∗ χ(n) (2)

In Formula (2), d(n) is the useful signal corresponding to
the signal. e(n) Therefore, according to the minimum mean
square error, the filter objective function can be calculated
with Formula (3).

ε(n) = [d2(n)] − 2� T (n)p + � T (n)R� (n) (3)

In Formula (3), R = E[x(n)x T (n)], the autocorrelation
matrix representing the input signal, the size is M × M ,
using P = E[d(n)x(n)] the cross-correlation matrix of R
representing d(n), and after knowing x(n), and P after, the
optimal filtering weight coefficient of the objective function
can be obtained by calculating w0 using Formula (4)

w0 = R−1 P (4)

According to Formula (4) and Formula (3), the minimum
mean square error of the objective function can be obtained.
The εmin calculation formula is shown in Formula (5),

εmin = E[d2(n) − wT
0 (n)Rw0(n)] (5)

According to the minimum mean square error, M × 1
the gradient vector of the dimensional signal at time can be
obtained, as shown in Formula (6). n

∇(n) = ∂ E[e2(n)]

∂w(n)
= −E[2e(n)x(n)] (6)

According to Formula (6), the updated formula for the filter
weight coefficient w(n +1) can be obtained with Formula (7).

� (n + 1) = � (n) + μ[−∇(n)] (7)

where μ represents the adaptive convergence step size,
∇(n) replace the gradient vector in Formula (7) with the
instantaneous estimated gradient vector Û∇(n), and obtain the
LMS algorithm representation, see Formula (8).

� (n + 1) = � (n) + μ[−Û∇(n)] (8)

where Û∇(n) is calculated with Formula (9).

Û∇(n) = ∂ E[e2(n)]

∂� (n)
= 2e(n)x(n) (9)

According to Formula (9) and Formula (8), the final form
of the LMS algorithm iteration formula can be obtained, see
Formula (10).

� (n + 1) = � (n) + 2μ ∗ x(n) ∗ e(n) (10)

Formula (10) μ represents the step size convergence factor.
Based on the above derivation content, it can be seen that three
main calculation steps of the LMS algorithm are applied to
spectrophotometer denoising. First, the parameters required
for the algorithm operation are initialized; secondly, the
initial condition environment of the algorithm is setand,
finally, adaptive signal processing is performed. Input the
desired signal and the input signal into the filter for iterative
calculation. Next, the performance measurement indicators of
the LMS algorithm are designed comprising three indicators:
steady-state error, convergence performance and convergence
speed. In terms of convergence, the main aim is to make εmin
the expectation of the minimum mean square error converge
and obtain the minimum value, and at the same time make the
weight coefficient w(n) converge to the mean value; then it
needs to satisfy Formula (11).

0 < μ <
1

(M + 1)G
(11)

Formula (11) G represents the power of the input signal and
M represents the order of the filter. The convergence speed
of the algorithm has a high correlation with the convergence
time, and the shorter the convergence time, the faster the
convergence speed. Formula (12) can be used to define the
convergence time of the LMS algorithm.

TM S E = 1

2μλmin
>

λmax

λmin
(12)

where λmin is the minimum value among all the eigenvalues
of the autocorrelation matrix in the input signal. The steady-
state error of the algorithm is expressed by the offset two, and
the offset is P defined according to Formula (13).

P = E[Je(∞)]

Jmin
(13)

In Formula (13), Je(∞) and Jmin represent the final value of
the minimum mean square error and the estimated value of the
minimum mean square error, respectively. In Formula (13),
Je(∞) is calculated according to Formula (14).

Je(∞) = E[Je(∞)] − Jmin = μJmin
∑M

i=1 λi

2 − μ
∑M

i=1 λi
(14)

λi represents the i th eigenvalue, according to Formula (14)
and Formula (13), and considering the fact that the μ value is
small in practice, Formula (15) is obtained.

P = 1

2
μ

M∑

i=1

λ1 (15)

There is a linear correlation between the offset P and the
algorithm convergence step size. μ, the average eigenvalue
can be calculated according to Formula (16) for clarity of
understanding

λav = 1

M

M∑

k=1

λk (16)
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Figure 4 Overall framework design of LP denoising algorithm.

According to this Formula (16) and Formula (15), another
formula for calculating the stable offset is obtained, as
Formula (17).

P = 1

2
μMλav (17)

Note that in Formula (17) M represents the order of the
filter. It can be seen from Formula (17) that the determinant
of the convergence of the algorithm is the step size, the
determinant of the convergence speed is the running time of
the algorithm and the characteristics of the input signal, and
the steady-state error is determined by the filter order and step
size convergence parameters. It can be seen that there is a
certain inconsistency between the convergence performance,
convergencespeed and steady-state error of the adaptive filter,
and it is impossible to obtain the optimal value of multiple
aspects simultaneously. At this point, the LMS algorithm
in the anti-interference method of the spectrophotometer has
been designed.

3.2 Signal Acquisition Method Based on
PWM and Design of Spectrophotometer
Anti-Stray Light Method

Given the characteristics of the reference signal of ambient
stray light, this research considers the idea of “time division
multiplexing”, and uses the pulse width modulation PWM
technology to modulate the light source, thereby converting
the original DC optical signal into a periodic intermittent
signal. That is f , the PWM pulse signal of the frequency,
is used to modulate the light intensity of the light source
driven by the constant current power supply to change the
light intensity. The principle of the acquisition method of this
reference signal is as follows. It is assumed that the noise
with a high frequency has a short-term stationary property,
or that the stray light T has a short-term stationary property
within a period of this frequency condition. Then, a light
source is created that can generate a PWM periodic signal.
The blocking condition is equivalent to turning off the light
source, and the signal collected at this time is regarded as
a noise signal. Conversely, the light transmission condition
is equivalent to turning on the light source. At this time,
the signal of the mobile phone is regarded as a noisy signal.
Signal. The signal sampling frequency fs meets the fs � f
condition, the number of samples in one cycle N = fs/ f .
Therefore, when the PWM is low, because the light source
is turned off, there is no diffraction and scattering caused
by the light source in the instrument, and the measured
data is considered to be N/2 the stray light intensity of the
length. When the PWM is at a high level, the acquired
signal is a noise-containing signal, and the low-level optical
signal in the adaptive processing needs to be used as a noise
reference signal to provide an accurate denoising reference
amount for the noise-containing signal measured in a high-
level condition. In addition, light with the same wavelength
can be continued for multiple modulation periods to improve
noise reduction quality. In the actual measurement, it is
necessary to modulate the PWM frequency according to
the change in the stray light of the external environment,
achieve the on-off adjustment of the light source signal, and
ensure the correlation between the obtained reference signal
and the noise. Next, the LMS filter and the PWM signal
acquisition method is used to construct the spectrophotometer
signal anti-interference method (hereinafter referred to as the
LP denoising algorithm). The design framework of the LP
denoising algorithm is shown in Fig. 4.

When collecting signals in real-world scenarios,useful signals 
and noise signals are often coupled with each other. In 
order to improve the quality of denoising, the coupling 
effect of the two should be reduced. Therefore, accurate 
acquisition of reference signals is a key step in the intelligent 
denoising process [19]. In the traditional signal processing 
work, modulation and filtering are used to obtain reference 
signals. Later, some people have proposed multi-channel 
reference signal methods to obtain higher-quality signals. 
However, these methods do not collect the noise and statistical 
characteristics of the measurement, and can only be used in 
the measurement. After the data is processed, the accurate 
acquisition of the spike information in the signal is affected. 
However, in the current photometric detection, there is 
generally no equipment for obtaining the reference signal of 
stray light, which is not good for the accurate extraction of the 
signal, and a more scientific method is needed to obtain the 
reference signal of adaptive denoising [20].
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Figure 5 Computational framework of stray light noise point-by-point adaptive correction algorithm.

As shown in Fig. 4, the algorithm comprises three core
calculation steps. The first step acquires the input signal. The
output signal of the detector should be a periodic signal in the
shape of “square wave”. The signal acquired in the low-level
state is the reference signal of ambient stray light, and the sig-
nal acquired in the high-level state is a noisy signal. The sec-
ond step predicts the noise signal. Since the noise containing
signal and the reference signal are collected at different times,
the reference signal cannot be directly used to replace the noise
signal in the noise containing signal. However, considering
the short-time stationary characteristics of stray light in the
period and the one-dimensional and continuity of the reference
signal, the reference signal can be used as the filter input to
predict the noise in the signal. The last step i cancels the
external stray light noise, superimposes the noise prediction
signal on the reference end of the adaptive noise canceller, and
superimposes the noisy signal at the signal input end. Because
the stray light can remain stable in a short period of time, there
is a certain correlation between the stray light signal and the
noise signal in the noisy signal. Therefore, an adaptive noise
canceller is used to cancel the external stray light signal and
output a useful signal with higher quality. It can also be seen
from Fig. 4 that the principal framework of the point-by-point
adaptive correction algorithm is shown in Fig. 5 when testing
samples with light sources of the same wavelength.

As shown in Fig. 5, set the PWM half cycle as t , the detector
input signal x(n) is processed A(z) and B(z − t) processed to
obtain a reference signal v1(n) and a noise-containing signal
s(n + t) + v2(n + t). v1(n) After the adjustment, the adaptive
filter weight coefficient S(z) is input into the prediction filter
to output the predicted noise signal v̂1(n + t), and then input
v̂1(n + 1) it s(n + t) + v2(n + t) into the noise canceller,
output v̂1(n + t), compare it with s(n + t) + v0(n + t), and
get s(n + t) the optimal estimated value ŝ(n + t). Finally,
the overall calculation flow of the stray light LP denoising
algorithm of the spectrophotometer is shown in Fig. 6.

As can be seen from Fig. 6, the input signal of the
algorithm is the optical signal data collected by the detector.
The algorithm captures the stray light reference signal by
distinguishing the level state of the input signal, and then uses
the LMS filter to achieve fast denoising processing of noisy
signals; the output is a useful signal that filters out most of the
stray light noise.

4. PERFORMANCE VERIFICATION
OF SPECTROPHOTOMETER
ANTI-STRAY LIGHT NOISE
ALGORITHM

4.1 Design of Simulation Experiment Scheme

In order to test the applicability of the proposed spec-
trophotometer anti-stray light noise algorithm, a simulation
experiment was designed. In the simulation experiment, the
useful signal was simulated by a square wave signal, the
reference signal representing the ambient stray light signal
was simulated by random white noise, and the noisy signal
input to the algorithm was formed by the superposition of the
previous two signals.

In Fig. 7 is 0.0002, and the useful signal and noise
signal are d(n), v(n) respectively (2π t/1000 + π)2 + 1 ·
(0.1)0.5 × randn(1, N). In addition, in order to compare the
performance of the LP denoising algorithm, recursive least
squares algorithm (ordinary least squares, OL S) and the LMS
algorithm were selected for the construction of an alternative
denoising algorithm.

4.2 Experimental Results

After the simulation experiment was completed, the process-
ing results of the anti-interference and de-noising algorithms
of each spectrophotometer on the noise-containing signal of
the simulated signal were sorted out. Firstly, the convergence
speed of these algorithms was analyzed from the perspective
of the training process of each denoising algorithm. The
statistical results are shown in Fig. 8.

In Fig. 8, the horizontal axis represents the number of
training iterations of each algorithm, the vertical axis repre-
sents the normalized mean square error of each algorithm,
and different colors represent different spectrophotometer
denoising algorithms. According to the analysis of Fig. 8,
the mean square error signal of each algorithm shows a trend
of periodic fluctuation and decline in the process of increasing
the number of iterations of the algorithm, indicating that the
three selected algorithms can remove the stray light noise of
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Figure 6 Calculation flow of stray light LP denoising algorithm of spectrophotometer.

the noisy signal, but the denoising effect is significantly better
in the high-level state. However, regardless of whether the
noisy signal is in the low-level or high-level state, the signal
filtering effect of the L-P algorithm proposed in this study
is significantly better than the other two methods. From the
point of view of quantized data, the average output amplitude
of high-level signals after the denoising processing of L-P
algorithm, OLS algorithm and LMS algorithm is 1.996,but the
relative errors of the three algorithms are 0.17%, 1.86% and
0.92% respectively. The average output amplitudes of low-
level signals after denoising by L-P algorithm, OLS algorithm
and LMS algorithm are 0.000, 0.002 and −0.001 respectively,
and the relative errors of the three algorithms are 11.41%,
16.95% and 13.88% respectively; the denoising effect is stable
after 372 ms, 385 ms and 498 ms respectively in each low-
level interval. Finally, the residual signals of the noisy signals
processed by the training algorithms are analyzed, and shown
in Fig. 10.

In Fig. 10, the horizontal axis still represents in milliseconds
the duration of the residual signal, and the vertical axis
represents the corresponding assignment of the signal. Since
the waveform diagram in Fig. 9 proves that the change trend
of the output signal of each denoising algorithm in each
fluctuation cycle is generally consistent, only the details
caused by noise will be different; therefore, here, only one

the spectrophotometer to a certain extent. But specifically, 
the OLS algorithm has the fastest convergence speed, but 
the overall value of the vehicle index is also the highest. 
The convergence speed of LMS algorithm ranks second, and 
the mean square error value after convergence also ranks 
second in the overall level. The L-P algorithm designed in 
this study has the slowest convergence speed, but the overall 
mean square error after convergence is also the smallest. 
From the quantitative point of view, the normalized mean 
square error values of L-P algorithm,OLS algorithm and LMS 
algorithm after convergence are about 0.013, 0.018 and 0.043 
respectively. Next, the noisy signals processed by the training 
algorithms are compared. The statistical results are shown in 
Fig. 9.

In Fig. 9, the horizontal axis represents the duration of 
the signal in milliseconds, the vertical axis represents the 
relative amplitude of the output signal of each model, and 
the lines of different colors represent the waveform diagram 
of the signal output after the different spectrophotometer 
stray light denoising algorithms processes the simulated noisy 
information. Since the output signal has a strong correlation 
with the period of the noisy signal, only the waveform 
diagram periods of two complete output signals are used for 
analysis. It can be seen from Fig. 9 that the three denoising 
algorithms have poor denoising effect in the low-level state of

vol 32 no 2 March 2024 185



THEAPPLICATION OF HYBRIDALGORITHM INTEGRATING PWM AND LMS IN SPECTROPHOTOMETER INSTRUMENTANALYSISANDANTI-INTERFERENCE METHOD

Figure 7 Waveforms of expected signal and noise signal in the simulation experiment.

Figure 8 Convergence process comparison of various spectrophotometer stray light denoising algorithms.

complete cycle of the residual signal obtained after processing
by each denoising algorithm is selected for analysis. Fig. 10
shows that the residual signal of the output signal processed
by the LP algorithm, OLS algorithm, and LMS algorithm

after training generally also has a downward trend in relative
amplitude fluctuations with duration in one cycle, and the
overall residual of the three. The volatility ranking is
consistent with the relative error ranking in Fig. 9, indicating
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Figure 9 Waveforms of the output signals of the stray light denoising algorithms of each spectrophotometer.

Figure 10 Waveforms of output residual signals of each spectrophotometer stray light denoising algorithm.

performance of the filtering algorithm and compare it with
that of another algorithm. The normalized mean square
error values after convergence of the L-P algorithm, the
OLS algorithm and the LMS algorithm are 0.013, 0.018,
and 0.043, respectively. The algorithm designed in this
study has the slowest convergence speed during the training
phase. The slowest, but the overall mean square error after
convergence is also the smallest, while the OLS algorithm has
the fastest convergence speed, but the overall mean square
error after convergence is also the highest; The average high-
level output amplitude of the signal is 1.996, but the relative
errors of the three are 0.17%, 1.86%, and 0.92%, respectively.
The L-P algorithm, OLS algorithm, and LMS algorithm de-
noised signal low-level average output amplitudes are 0.000,
0.002, and −0.001, respectively, and the relative errors of

that the experimental statistics have strong consistency. 
Specifically, when the stray light noise denoising residuals of 
each spectrophotometer tend to converge, the maximum and 
median residual values of the LP algorithm, OLS algorithm, 
and LMS algorithm are 0.013, 0.034, 0.051 and 0.004, 0.010, 
0.028 respectively.

5. CONCLUSION

In practical applications, the functions of spectrophotometers 
are easily disrupted by stray light noise, which reduces their 
effectiveness. Therefore, this research combines LMS and 
PWM to design a filtering algorithm to filter stray light noise. 
Simulation experiments were carried out to determine the
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the three are 11.41%, 16.95%, and 13.88%, respectively. In
each low-level interval, the denoising effect of the model is
stable through 372ms, 385ms, and 498ms, respectively. The
experimental data obtained from simulation show that the
stray light denoising performance of the algorithm designed
in this study is significantly better than that of the algorithms
currently beingused in industry. At the same time, due to the
limitation of research conditions,no actual data were collected
to confirm the superior performance of the algorithm. This
will be the focus of future research.
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