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Based on the theory that the stability of the boundary value of the differential order partial differential equation is the key factor in the stability control
of the fuzzy two-degree-of-freedom control system, the weak convergence of the partial derivative truncation error is analyzed. First, by means
of mixed-logic mapping, the quasi-linear differential equation of the nonlinear dynamic mixed control model is established; then, the constraint
problem of the partial differential equation is analyzed using the differential equation of the eigenvalue inverse stable solution with the introduction
of boundary conditions; finally, the quasi-linear equation is used with the time-delay characteristic. The function-dependent properties of differential
equations traverse the solution space, and the truncation error analysis of the weak convergence and stability of the solution space is obtained. The
results show that the differential order partial differential equations have weak convergence of truncation error and good convergence in a fuzzy
two-degree-of-freedom control system.

Keywords: time-delay effect; quasi-linear differential equation; truncation error weak convergence problem; convergence

1. INTRODUCTION

The development and application of high-tech is inseparable
from applied mathematics. With the continuous development
of applied mathematics and control theory in recent years,
high-tech applications are now widely used in industry and
manufacturing [1]. For example, most researchers currently
use time-delay linear differential equations to construct
state-constrained objective functions in control systems, and
apply them to control fields such as industrial control and
flight guidance control [2, 3]. As a high-order differential
equation, partial differential equation has great application
value in the theoretical research of control systems and
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pattern recognition. Under the mathematical chaos theory,
the differential order partial derivative equation has a certain
boundary value period, and the existence and convergence
of the boundary value determine the stability and time delay
constraints of the control system [4]. Therefore, the research
conducted in this paper on the weak convergence of the
truncation error of the differential order partial derivative
equation is of great significance in terms of improving the
stability of the control system.

In traditional methods, the theory of equilibrium point
translation is used to analyze the problem of truncation
error weak convergence of differential order partial deriva-
tive equations under mathematical chaos theory [5]. By
constructing a linear subspace of a quasi-linear differential
equation, a linear subspace of a linear differential equation,
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a linear subspace of a linear differential equation, an edge
value eigenvalue decomposition of the linear differential
equation and Lyapunov-Krasovskii functional are used [6].
Reference [7] developed the stationary solution of the
nonlinear autoregressive sequence and the existence analysis
of its moment, provided a solution for the weak convergence
value of the stable truncation error of the pseudo-linear
differential equation, and applied it to the stability control of
the second-order fuzzy logic system. However, this method is
not suitable for the time-delay control of the weak convergence
value of the truncation error when the fluctuation point of
the equilibrium of the equation changes. Therefore, this
paper analyzes the problem of weak convergence of truncation
error of differential order partial derivative equation under the
mathematical chaos theory, obtains the value of this weak
convergence under mathematical chaos theory, analyzes the
weak convergence and stability of the truncation error, and
draws a valid conclusion.

2. THE CONSTRUCTION OF THE
PRE-KNOWLEDGE MODEL AND
ITS CONSTRAINT ANALYSIS

2.1 Differential Order Partial Derivative
Equation Under the Theory of
Mathematical Mixing

In order to analyze the aforementioned problem of weak
convergence [8, 9], the boundary conditions of quasilinear
differential equation with time delay effect in online subspace
are analyzed. The nonlinear-coupled Levenberg-Marquardt
equation is used to express the differential order partial
derivative equation under mathematical chaos theory. The
process is shown in equation (1).

{
C1(s) = λ2s+1

λ1s+1 ds

C2(s) =
∏i=n

i=1 (Tmis+1 )

Km(λ2+Lm)s ds
(1)

In the above formula, λ1 and λ2 are time constants of
m-dimensional complex spaces, Km is time delay of pure
lag, Lm is open-loop transfer gain, and given a vector group
x1, x2, . . . , xn ∈ Cm , the Lyapunov functional is carried
out under different boundary conditions [10]. The partial
derivative of the differential order partial derivative equation at
the stable point of equilibrium F(xk+1) is obtained under the
mathematical mixed solution theory. As shown in equation
(2).

gk + Ak�xk = 0 (2)

Definition 1 Assumes that the coupling relationship between
eigenvalues and eigenvectors of differential order partial
derivative equations under gi (·) mathematical chaos theory
of nonlinear function α, β ∈ R, which is expressed as
equation (3).

xk+1 = xk − A−1
k gk (3)

According to the Leibniz stability condition of the quasi-
linear differential equation with time-delay effect [11], the

characteristic of the input state of the F(x) as the linear
subspace is as equation (4).

F(x) = vT (x)v(x) (4)

Theorem 1 If the first step of the output of the scalar ρ and
the non-zero vector v is as equation (5).

∇F(x j ) = 2
N∑

i=1

vi (x)
∂vi(x)

∂x j
(5)

The initial value of the differential order partial derivative
equation under the theory of mathematical mixing is expressed
as equation (6).{

un − �u + |u|4u = 0,

(u, ∂t u)|t=0 = (u0, u1) × Ḣ sc−1
x

(6)

Where u:I × I Rd → I R is a real-valued function, the
measure of fuzzy two-degree-of-freedom control system under
continuous disturbance is as equation (7).

∇F(x) = 2J T (x)v(x) (7)

In the time interval, when d = 4, sc = 3
2 , the Jacobian

matrix A > 0 of the weak convergence value of the truncation
error of all the J (x) and the differential equations is as
equation (8).

J (x) =

⎛
⎜⎜⎜⎜⎝

∂v1(x)
∂x1

∂v1(x)
∂x2

· · · ∂v1(x)
∂xn

∂v2(x)
∂x1

∂v2(x)
∂x2

· · · ∂v2(x)
∂xn

...
...

. . .
...

∂vN (x)
∂x1

∂vN (x)
∂x2

· · · ∂vN (x)
∂xn

⎞
⎟⎟⎟⎟⎠ (8)

Define the critical canonical index sc = d−1
2 . Solving

the time interval and solving the weak convergence problem
of truncation error of differential order partial derivative
equation under mathematical chaos theory is transformed into
the convergence problem of finding the critical regular index
[12].

2.2 Nonlinear Dynamic Hybrid Control
Model of Differential Equations

The nonlinear dynamic chaos control model of quasilinear
differential equations is constructed under chaotic logistics
mapping [13]. The boundary conditions with stable solutions
for inverse eigenvalues of differential equations are introduced
[14]. The second-order gradient ∇2 F(x) of continuous
inverse stationary differential equations is calculated with
equation (9).

∇2 F(xkj ) = 2J T (x)J (x) + 2S(x) (9)

The high-order accumulated characteristic decomposition
in the time interval of the equation (1) is decomposed by using
a bilateral mapping K , and the control law of the Levenberg-
Marquardt constraint is as equation (10).

xk+1 = xk − [J T (xk)J (xk) + μk I ]−1 J T (xk)v(xk) (10)
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When μk is maximum, the nonlinear dynamic chaotic
control model of differential equation is stable [15]. The
homogeneous equation of quasilinear differential equation
with sometimes delay effect defined by s ≥ 0, when the initial
value condition is (u0, u1), then equation (11) exists.

F(x) =
Q∑

q=1

m∑
k=1

e2
kq (11)

Theorem 2 The desired output vector of the first-order inertia
link of the quasi-linear differential equation with the time-
delay effect of the 1

p = 1
q + s

d , 1 < p < q < ∞, s > 0, and

if the 1
p = 1

q + s
d , 1 < p < q < ∞, s > 0, according to the

Sobolev inequality theorem in equation (12).

|||∇| 5
4 (| f |4 f )||N 3

4
≤ |||∇| 5

4 (| f |4 f )||
L

20
13
t L

40
31
x

≤ |||∇| 5
4 f ||

L4
t L

8
3
x

||| f |4||
L

5
2
t,x

+ || f ||L10
t,x

|||∇| 5
4 f 4||

L
20
11
t L

40
27
x

≤ C
[|||∇| 5

4 f ||
L4

t L
8
3
x

||| f |4||
L

5
2
t,x

+|| f ||L10
t,x

|| f 3||
L

10
3

t,x

||

|∇| 5
4 f ||

L4
t L

8
3
x

]
(12)

≤ C|||∇| 5
4 f ||

L4
t L

8
3
x

|| f ||4
L10

t,x

≤ C|||∇| 5
4 f ||S 1

4
|| f ||4

L10
t,x

In infinite dimensional Bernoulli space, the critical thresh-
old of the least square matrix (u0, u1) ∈ Ḣ sc

x × Ḣ sc−1
x and the

higher order moment matrix K (Z1 + Z2 + Z3)
−1 K T of the

truncation error weak convergence value of the initial value
W Z−1

1 W T , the equation satisfies the following continuous
inverse stationary constraints.

0 =
∫ t

t−τ

ηT
1 (t)Xη1(t)ds −

∫ t

t−τ

ηT
1 (t)Xη1(t)ds

= τηT
1 (t)Xη1(t) −

∫ t

t−τ

ηT
1 (t)Xη1(t)ds (13)

0 =
∫ t

t−σ

ηT
2 (t)Yη2(t)ds −

∫ t

t−σ

ηT
2 (t)Yη2(t)ds

= σηT
2 (t)Yη2(t) −

∫ t

t−σ

ηT
2 (t)Yη2(t)ds (14)

where

S(x) =
N∑

i=1

vi (x)∇2vi (x) (15)

The solution x1(t), x2(t) of the quasi-linear differential
equation satisfies equation (16).

lim
t→∞ x1(t) = x0

1 , lim
t→∞ x2(t) = x0

2 (16)

The offset amplitude of the characteristic solution of the
differential equation is equation (17).

g(xi , y j |μk, σ
2
k ) =

K∏
k=1

αk
1√

2πσ 2
k

exp

{
− (xi − μk)

2

2σ 2
k

}

(17)

In the above formula, αk is the differential power, μk is
the Lyapunov-Krasovskii functional parameter, the boundary
condition of the inverse eigenvalue of the differential equation
is introduced, and the nonlinear dynamic hybrid control model
is constructed [16].

2.3 Partial Differential Equation
Constraint Problem

In the practical application of distributed control, the con-
straint problem of partial differential equation for � ⊂ R2 or
R3 region is as follows.⎧⎪⎪⎨

⎪⎪⎩
min
u, f

1
2 ||u − u∗||22 + β|| f ||22

subject to − ∇2u = f in �

with u = g on ∂�1 and ∂u
∂n = g on ∂�2

(18)

In the equation, ∂�1 is different from ∂�2, and ∂�1 ∪
∂�2 = ∂�, ∂�1 ∩ ∂�2 �= 0, u∗ is given. Find a u that
satisfies the condition of formula (1), so that u is infinitely
close to u∗ below the L2 norm.

When dealing with the optimization problem of partial
differential constraint, the method of discretization followed
by optimization is applied to transform the optimization
problem of partial differential constraint into a set of linear
equations containing a saddle point. In order to clarify the
transformation steps, the weak form is used to express the
process, which is shown in equation (19).{

u ∈ H 1
g (�) = {u:u ∈ H 1(�), u = g on ∂�}∫

�
∇u · ∇v = ∫

�
v f, ∀v ∈ H 1

0 (�)
(19)

Assume that V h
0 ∈ H 1

0 is an n-dimensional vector space,
where V h

0 is represented by the test function {φ1, . . . φn}.
In order for the boundary conditions to be true the
φn+1, . . . φn+∂n function is defined using the coefficient U j

to expand the set, Therefore,
∑n+∂n

j=n+1 U jφ j is inserted into

the boundary value as a set of vector values. If uh ∈ V h
g ⊂

H 1
g (�), then u = (U1 . . . Un)

T determines the value of uh

function, then equation (20) exists.

uh =
n∑

j=1

U jφ j +
n+∂n∑
j=n+1

U jφ j (20)

If V h
g = span{φ1, . . . , φn+∂n} ⊂ H 1

g (�) is assumed below,
then the finite-dimensional approximate formula of equation
(2) can be obtained. If uh ∈ V h

g is found, then equation (21)
exists. ∫

�

∇uh · ∇vh =
∫

�

vh f, ∀vh ∈ V h
0 (21)

With the steps given above, the discrete value uh of u in
formula (1) is obtained. The following steps are used to find
the discrete value of f , which can be obtained in the same
way. The formula is as equation (22).

fh =
n∑

j=1

Fj φ j (22)
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Under the condition that fh = 0 on boundary ∂�

is satisfied, the constrained optimization problem can be
converted into equation (23).

⎧⎨
⎩

min
uh , fh

1
2 ||uh − u∗||22 + β|| fh ||22∫

�
∇uh · ∇vh = ∫

�
vh f, ∀vh ∈ V h

0

(23)

Using the above conversion conditions, the discrete formula
(1) can be rewritten as equation (24).

min
uh , fh

1

2
||uh − u∗||22 + β|| fh ||22 =

min
uh , fh

1

2
uT Mu − uT b + α + β f T M f

(24)

Where, matrix M = {∫
φiφ j

}
i, j=1...n represents a mass

matrix, u = (U1 . . . Un)
T , f = (F1 . . . Fn)T and b ={∫

u∗φ j
}

i=1...n , α = ||u∗||22. After comprehensively
considering the constraint conditions, the function expression
for wireless proximity to u is equation (25).

n∑
i=1

Ui

∫
�

∇φi · ∇φ j =
n∑

i=1

Fi

∫
�

φiφ j

−
n+∂n∑

i=n+1

Ui

∫
�

∇φi · ∇φ j , j = 1, . . . , n

(25)

or

K u = M f + d (26)

where, matrix K = {∫ ∇φi · ∇φ j
}

i, j=1...n represents the
stiffness matrix, and the component vectors generated by
the boundary value of uh are represented by d . By using
Lagrange multiplication to calculate the constrained problem,
then equation (27) exists.

χ : = 1

2
uT Mu−uT b+α+β f T M f +λT (K u−M f −d) (27)

where, λ stands for a vector formed by Lagrange multiplica-
tion, and linear equations of f , u and λ are obtained at the
same time, then equation (28) exists.

AX =
⎛
⎝ 2βM 0 −M

0 M K T

−M K 0

⎞
⎠
⎛
⎝ f

u
λ

⎞
⎠ ≡

⎛
⎝ 0

b
d

⎞
⎠ ≡ g

(28)
where, M ∈ R

m×m represents the mass matrix, K ∈ R
m×m

represents the stiffness matrix, d ∈ R
m is the vector value of

boundary conditions containing the discrete solution, b ∈ R
m

is the discrete form of the Galerkin projection vector, β is the
regular parameter, and λ is the Lagrange multiplier vector.

Due to the operation of finite element discretization, most
of the coefficient matrix is the zero-block matrix, and the
matrices K and M are relatively simple coefficient matrix
equations, which are convenient for calculation.

3. WEAK CONVERGENCE VALUE OF
TRUNCATION ERROR OF
QUASILINEAR DIFFERENTIAL
EQUATION AND ITS RELATED PROOF

The sampling point sequence of the boundary value solution
of obtained by the partial differential equation at the initial
moment is {Xn}. The initial solution vector of the partial
differential equation has some fixed point X∗. The stable
solution obtained with the equation (29) satisfies the constraint
conditions.

|| f ||Lq (IRd ) ≤ C|||∇|2 f ||L p(IRd ) (29)

The distribution function of the boundary value equilibrium
solution vector of the partial differential equation is equa-
tion (30).{

pH −pL
1−0 × m[0, 1] + mi [pL, pH ] = Ci

mi [pL, pH ] + mi [0, 1] = 1
(30)

According to the pignistic transformation rules, the equilib-
rium training data set of partial differential equations generates
a progressive Bochner-Riesz matrix model. As shown in
equation (31).

m′
i [pH , pL] = ωi × mi [pH , pL]

m′
i [0, 1] = ωi × mi [0, 1] + 1 − ωi

(31)

when
([

pH j , pL j
]) ⊆ ([pHi , pLi ]), w(k) ∈ L20,∞), then

equation (28) exists.

J ≤
∞∑

k=0

[
zT (k)z(k) − γ 2wT (k)w(k) + �Vk

]
(32)

by using the Schur complementary property, then equation
(33) can be obtained.

J ≤ �2(k)U�T
2 (k) (33)

Under zero initial conditions, the continuous functional
matrix of partial differential equation is equation (34).

U =

⎡
⎢⎢⎣

ĀT P Ā − P + K T RK + CT C ĀT P B̄ + CT D ĀT P F1 + CT F2

B̄T P Ā + DT C B̄T P B̄ − R + DT D B̄T P F1 + DT F2

FT
1 P Ā + FT

2 C FT
1 P B̄ + FT

2 D FT
1 P F1 + FT

2 F2 − γ 2 I

⎤
⎥⎥⎦

(34)

If the inequality U < 0 is true, the boundary value of
the equilibrium solution is obtained, and the stability of the
equilibrium solution of the partial differential equation is
derived. For any w(k) ∈ L2[0,∞), ||z(k)||2 ≤ γ ||w(k)||2 is
satisfied. By using the compression mapping principle, when
the nonlinear term U < 0 is established, the characteristic
parameter H∞ of the spatial state of the equilibrium solution
satisfies the nonlinear convergence γ . By using the Schur
complement property, and letting xn+1 = μxn(1 − xn) be a
set of all amplitude vector points, U < 0 and matrix can be
simplified as equation (35).⎡
⎢⎢⎢⎢⎢⎣

−P−1 Ā B̄ F1 0

Ā
T −P + KT RK 0 0 CT

B̄
T

0 −R 0 DT

FT
1 0 0 −γ 2I FT

2
0 C D F2 −I

⎤
⎥⎥⎥⎥⎥⎦ < 0 (35)
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The boundary existence and global convergence of partial
differential equations under linear search are analyzed, and
lemma can be used to obtain.
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P−1 + εGGT textb f text it A B F1 0

AT −P + KT RK + ε−1(AT
1 A1) ε−1(AT

1 B1) 0 CT

BT ε−1BT
1 A1 −R − ε−1(BT

1 B1) 0 DT

FT
1 0 0 −γ 2IFT

2

0 C D F2 −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(36)

By using the Schur complement property, the global regular
asymptotic periodic solution satisfies the LESLIE-GOWER
transformation. As shown in equation (37).
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P−1 + εGGT A F1 BR−1DT BR−1BT
1 0

AT −P 0 CT AT
1 KT

FT
1 0 −γ 2I FT

2 0 0

DR−1BT C F2 −I + DR−1DT DR−1BT
1 0

B1R−1BT A1 0 B1R−1DT −εI + B1R−1BT
1 0

0 K 0 0 0 −R−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (37)

The delay differential equation is treated by the generalized
strong vector quasi-equilibrium, which is also multiplied by
the matrix. As shown in equation (38).⎡

⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 0 0
0 P−1 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎦

(38)

The auxiliary matrix is applied to solve the equation to
determine the coefficient ck . Let P−1 = Q, R−1 =
S, M = KP−1, �2(d2(t)) be the Bernoulli Spaces of
partial differential equations L(Z2 + Z3)

−1 LT and MT (Z2 +
Z3)

−1 MT on the global regular region d2(t)(0 ≤ d2(t) ≤ h2),
and only if:

�(h1, h2) = � + h1 K (Z1 + Z2 + Z3)
−1 K T

+ h2 M(Z2 + Z3)
−1 MT < 0, (39)

NEGM
C (d) = ∪{Ei |g(d|Ei)

= min(g(d1|Ei ), · · · , g(dm |Ei ))

< 0, 0, Ei ∈ E} (40)

BNDM
C (d) = ∪{Ei |g(d|Ei) = 0, Ei ∈ E} (41)

�(0, 0) = � + h1W Z−1
1 W T + h1 L(Z2 + Z3)

−1 LT

+ h2 L(Z2 + Z3)
−1 LT < 0. (42)

The partial derivative of the solution vector of the equilib-
rium solution vector of the partial differential equation is set
as 0, and the following is obtained.

∂L

∂ R
= 0 →

∑
i

αi = 1

∂L

∂o
= 0 → o =

∑
i αi xi∑

i αi
=
∑

i

αi xi

∂L

∂ξi
= 0 → A − αi − γi = 0

(43)

The distribution characteristic function was applied to
carry out the adaptive lyapunov exponential functional of
partial differential equation in Cauchy kernel, and the stability
objective function of the equilibrium solution was obtained
with equation (44).

max
n∑

i=1

αi K (x1, xi ) −
n∑

i=1

n∑
j=1

αiα j K (xi , x j )

s.t :
n∑

i=1

αi = 1 0 ≤ αi ≤ A

(44)

It can be seen that when there is a stable solution to partial
differential equations under double boundary conditions
exists. The proof of stability is explained below.

It is proved that: the random measure foot of the stable
solution of partial differential equation at the equilibrium
point. As shown in equation (45).

|T u(t)| =
∣∣∣∣
∫ 1

0
G(t, s) f (s, u(s), Dβ

0+u(s))ds

∣∣∣∣
≤
∫ 1

0
|G(t, s)a(s)|ds + M

∫ 1

0
|G(t, s)|ds

≤ k +
(∫ 1

0

(1 − s)α−1

�(α)
ds + 1

�(α)

∫ t

0
(t − s)α−1ds

)

≤ k + M(tα + 1)

α�(α)

≤ k + 2M

�(α + 1)
(45)

In the quadrant of the discrete stochastic process, the
covariance matrix of the partial differential equation is
(x1, x2 ≥ 0), and the Lyapunov functional is adopted. Let
the Yapunov functional confidence of Dβ

0+u(s) and G(t, s)
be equation (46) and equation (47).

F∑
i=0

(
n

i

)
pn−i

L (1 − pL)i = 1

2
(1 − C) (46)

N∑
i=F

(
n

i

)
pn−i

H (1 − pH )i = 1

2
(1 − C) (47)

The triple solitary wave solution of boundary region BNDM
C

is equation (48).

POSM
C (d) = {Ei |g(d|Ei) > 0, Ei ∈ E} (48)

NEGM
C (d) = {Ei |g(d|Ei) < 0, Ei ∈ E} (49)

BNDM
C (d) = {Ei |g(d|Ei) = 0, Ei ∈ E} (50)

To obtain the stable periodic points in equilibrium partial
differential equations with stable solutions, we use equa-
tion (51) and equation (52).

G(C[� + κ(�)]) + CT = 0 (51)

lim
x→∞ E[ sup |X (t) − y(t)|p] < lim

x→∞ G−1

× (G(c[� + κ(�)]) + CT ) = 0 (52)
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According to the Cauchy convergence condition, it is
proved that the equilibrium interpretation of a class of
partial differential equations with a homogeneous solution is
asymptotically stable, thereby proving the proposition.

3.1 Weakly Convergent Value of Truncation
Error of Quasilinear Differential
Equation and its Proof

The differential boundary ∇2 F(x) of the differential order
partial derivative equation under the theory of mathematical
mixing can be approximated as equation (53).

[∇2 F(x)]kj
∼= 2J T (x)J (x) (53)

The iterative formulas of discrete differential boundary
solution vectors W and Z at the equilibrium point P0(x0

1 , x0
2 )

of the equation are equation (54) and equation (55).

Wji(k + 1) = wji(k) − α
∂ F

∂wji
(54)

zkj(k + 1) = zkj(k) − α
∂ F

∂zkj

(55)

The Jacob matrix for constructing the characteristic space
of weak convergence value of truncation error can be written
as equation (56).

J (x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂e11

∂w11

∂e11

∂w12
· · · ∂e11

∂zmt

∂e21

∂w11

∂e21

∂w12
· · · ∂e21

∂zmt

...
...

. . .
...

∂emQ

∂w11

∂emQ

∂w12
· · · ∂emQ

∂zmt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(56)

Theorem 3 Under the anti-periodic boundary condition, the
constraint control is realized by the bounded condition w ∈
(a1, aN ], and the differential boundary condition of the
differential order partial derivative equation under the theory
of the mathematical mixed solution is equation (57).

∂edq

∂zkj
= −∂Ydq

∂zkj
= −∂g(odq)

∂zkj
= −g′(odq)

∂

(
t∑

j=1
zd j a jq

)

∂zkj

(57)

∂edq

∂wji
= −∂Ydq

∂wji
= − g′(odq)

∂odq

∂wji
= − zdjxiqg′(odq) f ′(netjq)

(58)

The characteristic solution space of the quasi-linear
differential equation is subjected to the characteristic solution
space traversal of the quasi-linear differential equation by
adopting the time-delay correlation degree characteristic
functional, and the scale Si (i = 1, 2, · · · , L) of the weak
convergence value of the cut-off error of the quasi-linear
differential equation meets the following conditions.

(1) Si ∩ Sj = ϕ, ∀i �= j ;

(2) ∪L
i=1 Si = V − vs ;

(3) All solution vector sequences in Sk are monotone
increments

Lemma 1 Let f (x) be a continuous function, the sequence
of solution vectors of differential equations satisfies the
Hausdorff discreteness condition, and the continuous solution
vector G of the boundary value of differential equations is
obtained.

f (x) =
{

f (x), x ∈ Lev f

a, x ∈ Lev f
(59)

G(x)

⎧⎪⎨
⎪⎩

∂ f (x), x ∈ Lev f

a, x ∈ Lev f

∂C(x)

(60)

Then it is shown that f (x) is a stable convex function of
quasilinear differential equation, and f (x) is a strictly convex
function [17]. When b > a, mathematical chaos theory, the
upper and lower boundary of the boundary value Leva f of
differential order partial derivative equation can be obtained.

Leva f ⊂ {x | f (x) < b} (61)

When the ∃x, p > 0, u > 0 condition is established, there
are:

u(t) = w(t)(u0, u1)+
∫ t

0

sin((t − t ′)|∇|)
|∇| F(u(t ′))dt ′ (62)

Let f (x) be a continuous function in the real
number field, and satisfy the || f ||Lq

t Lr
x (I×I Rd ) =(∫

I

(∫ | f (t, x)|r dx
)q/r

dt
)1/q

, then:

1

r
+ 1

r ′ = 1,
1

q
+ 1

q ′ = 1 (63)

For the map F of the set of R → P(R), there are
equation (64).

Rβ X = U
{

E ∈ U/R|c(E, X) ≤ 1β
}

(64){
a(Hac) = 1 − Hac

max(Hac)+l

max(Hac) = log2 k
(65)

Then

ind(P) =
{
(x, y) ∈ U2|a(x) = a(y)

∀a ∈ P

}
(66)

Because f (x) is a stable pseudorandom convex function,
the eigen solution space of the quasilinear differential
equations is traversed by using the time-delay correlation
degree characteristic functional, and it is found that any stable
point in the solution vector space is an extreme point. From
this, the stable truncation error weak convergence value is
obtained with equation (67).

f o(x, v) = lim
x→∞ sup( f (y + tv) − f (y))/t (67)
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(c) c = 5.0

(a) c = 1.5

(b) c = 2.4

Figure 1 Weak convergence test results of truncation error of differential order partial derivative equation under mathematical chaos theory.

Where f o(x, v) is the derivative of the continuous function
f (x) in the real field in the direction x of the v. When satisfied
equation (68).

(g − x)T (x0 − x) > 0 (68)

Then F has a pseudorandom boundary value vector at
B(x, u). Through the above steps, the weak convergence
value of truncation error of differential order partial derivative
equation under mathematical chaos theory is obtained, and
the weak convergence and stability of truncation error are
analyzed on this basis.

η(x2 − x0) < 0, ∀η ∈ ∂ f (x) (69)

If the || f ||Lq
t Lr

x (I×I Rd ) = (
∫

I (
∫

IR | f (t, x)|r dx)q/rdt)1/q ,
for the appropriate a, b has �(B) ⊂ B , the convergence value
of the weak convergence of the truncation error is equation
(70).

||�(u)||L10
t,x

≤ ||w(t)(u0, u1)||L10
t,x

+
∥∥∥∥
∫ t

0

sin((t − s)|∇|)
|∇| (|u(s)|4u(s))ds

∥∥∥∥
L10

t,x

≤ η + |||∇| 5
4 (|u|4u)||N 3

4

≤ η + C|||∇| 5
4 u||s 1

4
||u||4

L10
t,x

≤ η + Ca4b

(70)

It is proved that the weak convergence value of the differen-
tial order partial derivative equation of the differential order
partial derivative equation has stability and the asymptotic
convergence, and the proposition’s validity is proved by
selecting the appropriate a to make the C(a4 + 2a3b) < 1.

4. TEST AND TEST ANALYSIS

In this paper, by using the method of numerical calculation
with c as the control parameter, the weak convergence
analysis of the cut-off error of the differential order partial
derivative equation under the theory of mathematical mixing
is carried out, and the periodic variation of the periodic
trace of the Rossler system with the change of the parameter
is observed. In the numerical simulation experiment, a
hyperchaotic Rossler system is established; its mathematical
model is

dy

dt
= By + G(y) + u(x) + U(t) (71)

Among them, y = (y1, Y2, y3, y4)
T ; B =( −a1 a1 0 1

d1 c1 0 0
0 0 −b1 0
0 0 0 r

)
; G(y) =

(
0

−y1 y3
y1 y2
y2 y3

)
; u(x) + U(t)

is the tracking controller, and u(x) is the compensator.
The compensator equation is u(x) = dx

dt − Ax − F(x).
During the experiment, the parameters (a, b, c, d) =
(0.25, 3, 0.5, 0.5) and J(a1, b2, c1, r) = (35, 3, 12.7, 0.5)

were selected, and the initial values were set to
[x1(0), x2(0), x3(0), x4(0)] = (3,−4, 2, 2) and [x1(0),

x2(0), x3(0), x4(0)] = (−15, 5, 9, 3). Based on this, the test
was carried out. The simulation results of the convergence of
the differential order partial derivatives are shown in Figure 1.
The left and right graphs in the figure represent the 3D and
2D phase trajectories, respectively.

The study reported in this paper found that, with the
proposed method, the stability of differential order partial
derivative analysis is better and the convergence is strong.
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5. CONCLUSIONS

In this paper, the problem of the weak convergence of the
truncation error of the partial derivative of the differential
order is analyzed. The nonlinear dynamic hybrid control
model of the quasi-linear differential equation is constructed
by means of mixed-logistic mapping, and the boundary
condition of the stable solution of the inverse characteristic
value of the differential equation is introduced. The
characteristic solution space of the quasi-linear differential
equation is subjected to the characteristic solution space
traversal of the quasi-linear differential equation using the
time-delay correlation degree characteristic functional. In this
paper, the weak convergence value of the cut-off error of the
differential order partial derivative equation is obtained by
applying the theory of mathematical mixing, and the weak
convergence and stability analysis of the truncation error
are carried out. It is concluded that the differential order
partial derivative equation in the mathematical mixed-degree-
of-freedom system has the weak convergence of the truncation
error, and has better convergence in the control of the fuzzy
two-degree-of-freedom control system.
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