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Nowadays, residential district drainage systems play a significant role in designing and investigating renovation projects to prevent water contamination
and stormwater runoff. After investigating the challenges associated with existing urban drainage pipeline systems, including runoff and its impact
on society and the environment, an efficient drainage network renovation is proposed, which is essential for residents’ health and quality of life. A
deep learning (DL) technique called backpropagation neural network for residential drainage renovation (BPN2-RDR) is employed in district drainage
network projects. Firstly, existing residential drainage infrastructures and the associated challenges are investigated. Secondly, optimized design
parameters, including pipe flow, channel capacity, and slopes for controlling runoff, are adopted for the renovation strategies. The training of the
neural network model with pertinent data obtained from Waipa district council, including 766 records and 36 attributes, enables the discovery of
various design patterns and the identification of the relationships of the parameters within the drainage network system. The design phase utilizes
the trained neural network to predict potential issues and optimize the drainage system for enhanced performance. For performance evaluation, the
proposed method is analyzed using metrics such as peak flow reduction rate of the drainage system, accuracy, precision, recall, and Root Mean Square
Error (RMSE). The result findings confirm the superiority of the proposed algorithm when applied to the district residential drainage network renovation
projects, thereby enhancing the residents’ quality of life.
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1. BACKGROUND INTRODUCTION

The residential work in the Waipa district drainage network
renovation project includes upgrading the infrastructure
through drainage pipes, inspection chambers, and utility hole
sewer fixtures improved with modern design parameters to
carry the residential wastewater to accommodate larger runoff
volumes and reduce the risk of flooding. In general, residents
in this district produce two distinct wastewater types. The first
one is household utensils wastewater that does not produce
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harmful bacteria, and the second one is from washrooms that
produce harmful bacteria called sewage wastewater. Both
types of wastewater are managed by the drainage network
and discharged into a common catchment, the municipal
drain, located outside residential boundaries. The general
diagrammatic representation of a drainage network project
in a residential district is depicted in Fig. 1.

Drainage networks serve as crucial stormwater systems
that carry surface runoff to appropriate bodies of water to
ensure the health and safety of residents by mitigating major
drainage overflows [1] and flooding of streets. According to
the state of the drainage structure, the renovation may involve
various tasks like leakage repairs, material replacement for
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Figure 1 General arrangement of residential drainage system.

defective or ruined parts, insulation deployment, or sewer
line improvements [2]. Because of its strong and complex
data-training capabilities, the neural network [3] is well
suited to handling complicated system modelling and control
issues. Being a complicated system that changes with non-
linearity and ambiguity, a city’s drainage network makes it
difficult to develop an analytical computational framework
model [4]. The main issue is a lack of knowledge of storm
drainage construction [5], necessitating the design of fixes
and taking precautions to guarantee overflow diversions in
inadequate subsurface drainage networks. The effectiveness
of improving the sewage system’s quality and efficiency was
assessed. The condition of the water at the point of intake
and outflow location, together with the amount of gathered
sewage, has significantly improved since the drainage system
renovation project [6] began. An important and difficult
task involves investigating various design aspects of drainage
networks, especially the damaged pipe [7] structures such
as inlet, flow, outlet, slow drainage, and corresponding
maintenance strategies.

The building materials used in drainage renovations and
the usefulness of applying Artificial Neural Networks (ANNs)
to comprehend and anticipate complicated interactions have
been explored [8]. A competent pipe network system is also
built thanks to quality and security monitoring [9] during
the building process. To provide adequate services for
residents, the water distribution and drainage network design
should conform to people-oriented thinking and ensure that
the drainage channels are not obstructed. Numerous issues
confront drainage management systems including combined
sewer overflows, bacteria and other disease-bearing organisms
in surface waters, floods, and the resulting residential property
damage [10]. The existing drainage network maintenance
for residential districts includes generalizing the pipeline
network, catchment basin locations, runoff measures of
stormwater, and monitoring pathways and flow rates [11].
Prescreening is needed to monitor chemicals and pollutants
in a drainage network system with proper sensor sites [12].
Whenever the choice of the water transportation locations is
unclear, the pipe determination’s layout design and diameter
are optimal simultaneously by considering the topographical
and hydraulic restrictions [13]. In [14], the dense residential

region of various locations was analyzed using clustering
approaches with the renovation strategies of catchments and
optimal location of roofs.

The advantage of renovation ideas in residential areas is that
improving the quality of drainage water supply and enhancing
the aesthetic benefits of waterways are inevitable even
though the economic aspects have not been properly assessed
[15]. The renovation proceeds sequentially, considering
the optimal time and cost investments related to renovation
projects and making appropriate decisions to prevent flooding
during natural disasters [16]. Designing and researching a
home’s drainage network are interrelated and help drainage
rehabilitation efforts succeed [17].

Research contributions

1. Investigate the feasibility of flooding and runoff chal-
lenges in existing drainage network systems and propose
a novel renovation approach.

2. Design new drainage model parameters with appropriate
infrastructure related to pipelines, flow capacity, and soil
types.

3. Recruitment of local authorities as decision-makers
and investigating of the renovation strategies’ roles in
maintaining the drainage network project using a trained
neural network.

The remainder of this research article is organized as follows:
(2) previous studies are examined; (3) the renovation project
of drainage network using a neural network trained using the
proposed algorithm is presented in detail; (4) the algorithm is
evaluated and discussed using a data source and compared
with benchmark schemes; and (5) conclusions, potential
limitations and recommendations for further research are
discussed.

2. PREVIOUS STUDIES

Chen et al. (2023) optimized a model based on Neural
Networks (NN) using statistical analysis, genetic algorithms
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(GA), and data from bioretention ponds that were still in
operation [18]. The model successfully predicted pollutant
removal efficiency, which also identified positive and negative
correlations between variables such as the amount of soil
erosion and the rainfall period. The results for accuracy
and representativeness were 69% and 93% respectively, with
an average removal ratio of ammonia and nitrite nitrogen.
Weather-related surface factors impact biological retention
reservoir performance.

Hameed (2022) developed and evaluated the ANN models
using a backpropagation algorithm for maintaining irrigation
and drainage projects [19]. The researcher determined the
validity and verification of the designed NN model using
independent variables such as length, cost, area, and thickness
associated with a dependent variable: the total duration of the
contract. The result was a Mean Percentage Error (MPE)
of 0.952, an accuracy of 89.37%, and a Root Mean Square
Error (RMSE) of 1.359. However, the factors underlying these
results were not explained.

Fei (2023) studied the modelling and optimal water level
forecasting drainage network control using the Long Short-
Term Memory (LSTM) model with Grey Correlation Analysis
(GCA) [20]. Investigating drainage pumping stations with
high correlation factors produced better accuracy, less RMSE,
and inflexion point tracking ability. The data for result
analysis was taken from the XM sewage pumping station
pipeline from a city from 2021 to 2022 with the 1 min sampling
period analysis. The efficacy of the grey correlation strategy
is contingent upon specific presumptions, and its suitability
may differ depending on the attributes of the data.

Chandale & Patil (2022) used the Digital Elevation Model
(DEM) to identify ridge lines in the Basin Delineation (BD)
[21]. Using Landsat images and ArcMap support, they
performed supervised classification to determine the area
of the impervious region, finding that 43% of the area
contained buildings and roads. Using MIKE, the urban
660+ connections were digitalized for a region, exported, and
imported.

Bakhshipour et al. (2021) proposed a multiobjective
decision-making platform for the modern sustainable design
of urban drainage systems with centralized and decentralized
infrastructures [22]. The performance indicators were
resilience in terms of both structural and operational layouts,
sustainability, and stakeholders’ approval. The generated
results were optimized using pareto front results in a non-
dominated manner. Numerous hybrid design schemes were
produced, combining aspects of grey, blue, and green colours
with varying sewage designs and levels of (de)centralization.
However, this research only allowed for a limited set of sewage
designs to be simulated.

Febrianto et al. (2023) implemented a Lamongan Residen-
tial Drainage System that was built using models developed
by the Hydraulic Engineering Centre-River Analysis System
(HEC-RAS) and the Storm Water Management Model
(SWMM) [23]. This is shown by the fact that there are
instances of severe flooding during the rainy season. The
flooding height in the residential complex is within 60 cm,
decreasing by more than 12 hours. According to the computed
findings, several parts of the canal experienced runoff, with

an anticipated Q5 flood flow of 8.14 m3/sec. Surveys in the
field revealed that the renovations to homeowners’ residences
had altered the widths of several waterways. This research
used SWMM and HEC-RAS software to conduct 1D channel
hydraulic modelling. The goal was to create a model that
closely matched the surface runoff conditions at the study
location.

Despite the advantages and improvements that current
strategies demonstrate in renovating the drainage network
in the residential districts, limitations discussed still need
to be focused on, such as topographical restrictions, the
impact of surface features, inadequate stormwater drainage
design, controlled drainage infrastructures, and limited curve
number of pipeline flow capacity [25]. Hence, the proposed
algorithm targets the renovation of residential drainages which
is a significant factor; this is in contrast to the existing
benchmark schemes such as GA-NN [18], LSTM-GCA [20],
and HM-SWMS [23] which are analyzed for performance
evaluation and comparison.

3. PROPOSED METHODOLOGY

Typically, drainage renovation entails making upgrades or
modifications to drainage infrastructure to increase the
renovation project’s effectiveness. The renovation aims to
tackle problems with the state of the water, flooding, soil
deterioration, and faulty drainage networks. An overall
diagrammatic representation of the proposed BPN2-RDR is
shown in Fig. 2.

Data Source Description

The data was obtained from a publicly available dataset [24]
with a link describing the drainage channels involved in the
stormwater network resources. The researchers gathered
previously unsurveyed information and historical assets of
existing drainage network infrastructure centred with various
dimension boundaries, types of drains, pipes, and their
condition. Fig. 3 shows a map of the residential side storm
water drainage systems of a district.

The assurance from the Waters Asset management team at
Waipa District Council with the data table consisting of 766
records and 36 attributes. The attribute focused on the swales
region comprises linear landforms that have gently sloping
sides and serve as drainage channels. The detailed drainage
network parameters are given in Table 1.

Designing a Neural Network Architecture

With the DL framework, TensorFlow implements the neural
network describing objectives, including renovating the resi-
dential drainage system, predicting the stormwater runoff,and
evaluating the effectiveness of different renovation strategies.
Input features like soil type,slope of land within the residential
boundary, and existing drainage infrastructure in residential
areas are included in the input layer of the neural network,
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Figure 2 The schematic representation of the proposed BPN2-RDR Model.

Figure 3 Map of stormwater district drainage system.
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Table 1 Drainage Network Parameters.

Drainage Asset Types Parameter Ranges

Stormwater Trench Distribution pipe-150mm dia, three perforated liners with HD lid.
Soakage trench Soil, rock formed swale, pipe, catch pit, retention pond

Material Rock, natural ground, concrete, Galvanised Steel
Drainage Condition /Performance Excellent, good

Accuracy Good, very poor, excellent, average
Criticality Medium, very high,
Location Footpath, road centre, verge, grass-berm, scruffy-dome

Shape Area (m2) 553986.9375
Shape Length (m) 6269.76925749705

and the optimal output will be the coordinates or locations
for the optimal drainage renovation project, recommended
drainage system modifications, and predicted stormwater
runoff. Throughout the residential drainage network project,
decisions could be made based on the neural network’s
projected outcomes. The Rectified Linear Unit (RELU)
activation function, the appropriate loss function RMSE,
and the Stochastic Gradient Descent (SGD) optimisation
algorithm are chosen. The neural network-based technique
seeks to reduce the possibility of floods, maximize stormwater
management, and help anticipate the best sites for residential
drainage renovations.

Data Preprocessing

Data preprocessing involved data cleaning and handling
missing values using mean imputation because it simply
ignores the correlation among input features such as soil types,
pipe capacity, and slope variants of asset types. These missing
values are filled with the mean of all the available data and
the statistical information is preserved. The inputs that pose
outliers have to be removed, which can impact the training
process of renovation strategies using a neural network model.
The residential drainage features show categorical types of
information; hence, the one-hot encoding process is applied
for categorical variables that can easily be input into a machine
learning model.

Investigation of the Residential Drainage
Network Project

Because of the impact of uneven house fence construction,
which blocks off a portion of the drainage pathways and
makes it harder for rainwater to enter, homes vary in size.
The inspection chamber is placed along the sewer pipe outlet,
similar to the manhole at the drainage network’s corner blocks.
Both sewage pipelines and sullage flow because of gravity
force from the drainage pipe outlet in residential areas. A
gully trap (GT) is a small-sized chamber that provides access
to any blockage in the drainage pipeline, and its purpose is to
act as a connection chamber for the drainage sullage pipeline
between residential apartments. The GT water seal prevents
foul gas from flowing through the sullage. All the residential
vertical drainage pipelines pass their sullage waste to the GT
above ground level.

The flow of wastewater through the draining pipeline is
maintained at the slope of the normal gradient at the range
of 3%. The drainage pipeline with a maximum diameter of
9 inches is used to interconnect the manholes and inspection
chamber. The maintenance holes are usually constructed with
brick, cement, or UnPlasticized Polyvinyl Chloride (UPVC)
reinforced fibre. The municipal sewer line usually runs below
ground, whereas the plumbing fixtures in the residences, such
as the floor trap, are placed at the highest level. The municipal
sewer line is connected with the residential drainage network
maintenance hole through the master inspection chamber. The
management of these chambers, along with the sewer pipeline
at a minimum of 6 feet below the ground level, is taken care
of by local authorities known as ‘municipal bodies’ to prevent
reverse flow across the residential boundaries.

It is necessary to renovate the infrastructure dimensions,
that is, the layout of the drainage ditch system, to prevent
flooding caused by the channel’s overflowing water levels.
Based on the current channel, it has been determined that
the dimensions of the previously used distribution cannot
accommodate and drain the designed flood discharge. Before
renovating the drainage network system, the designer must
investigate the supply network in terms of the materials
used, appropriate design layout parameters, and defined
standards of pipeline parameters usage. The best sustainable
management practices must be maintained to reduce the
impact of stormwater runoff on the quality and quantity
of water. Detention basins and tanks must be constructed
on various streets such as Vogel Street, Preston Road, and
Victoria Street shown on the map. They should include
green infrastructure components such as stormwater-based
bioswales and driveway gardens in residences.

Designing Parameters of Drainage Network
Project

The parameters are: maximum diameter maxα of a pipe in
terms of meter(m), maximum depth maxβ of all pipes in
the drainage network in terms of meter(m), maximum flow
velocity maxρ,t at m/s where ρ denotes the flow of velocity
over a time t , and water quality standards. When renovating,
the existing drainage infrastructure must be evaluated and
optimized to meet current and future demands, considering
pipe capacity, slope, and flow paths. The infrastructure is
comprised of 20mm Galvanised tendons deployed to a maxβ
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Figure 4 Schematic representation of design parameters.

9.0m and fitted with 300×300×100mm galvanised plate and
hex nut to ensure MacMatt R to slope range. The suggested
pipe materials are cast iron or PVC pipe. The objective is
to increase the capacity C of the residential district street
drainage pipeline network using design parameters like post
RC post renovation capacity and the pre RC prerenovation
capacity using equation (1).

C(increase %) = (post RC − pre RC )

pre RC

× 100% (1)

In addition, the C of a drainage pipeline can be estimated
using Manning’s formula of roughness coefficient denoted as
n. The cross-sectional flow area of square feet is defined as
A followed by hydraulic radius R in feet. S is defined as the
slope of the channel bed.

Frate = 1

n
· A · H (R)2/3 · S1/2 (2)

Fig. 4 illustrates the two extreme conditions in the boundary
line corresponding to each pipe length using equation (2), and
its connectivity between maintenance holes with the inflow
of stormwater runoff entrance over a time instant in terms of
hours is valuable.

Training Process Implementation Details
of Neural Network

The backpropagation technique is applied to learn the
renovation requirements of drainage. A neural network is
also used with the training input dataset to predict the optimal
location of drainage renovation. This requires continually
adjusting the biases and weights for minimal loss function
to reduce the discrepancy between the expected and actual
results. It was found that the neural network trained on
100 epochs with a batch size of 32 gradients can be applied
successfully to new designs for drainage, which can be
assessed using the testing dataset. The init_network() is a
function used to create a new neural network that can be used
to train the dataset for the renovation of the drainage network.
The function mentioned above accepts three arguments: the
number of inputs and the count of neurons that are not.

of_hidden neurons with the no. of_inputs+1 weights to be in
the hidden layer with xy coordinates for locating the renovated
drainage network with new ideas and additional bias followed
by the corresponding renovated output layer no.of_outputs
of the residential drainage network project with a weights
range of no.of_hidden+1.The weight w indicates the number
of neurons that will be activated with the added bias b as a
constant value.

Fig. 5 illustrates that for a layer with no. of_inputs+1
weights with input functions and nin connections, the corre-
sponding weights are initialized with Gaussian distribution
with mean 0 and variance 2

nin
.The weight matrix of each

layer, the element representation for each connection from
input, is given as wxy and from hidden to the output layer is
wxy are considered to be drawn from the same distribution

with initialization called w ∼ G
(

0, 2
nin

)
. Initializing

the network’s learning parameters for renovation involves
randomly selecting weights from the above distribution. The
non-linearity to the N2 is introduced by the RELU activation
function in the hidden layers with a learning rate α can be set
as 0.001 or 0.01.

The training procedure for the BPN2-RDR Model
# init_network()
fn init_network(nin, hidden_neurons, nout)
init w and b(nin, hidden_neurons, nout)
return(w(no.of_hidden), b(no.of_outputs))
# BP training model for a residential drainage renovation
project
fn train_BPN2 (model,training_data, epochs(100),
batch_size=32, α = .0001)

for epoch in range(epochs):
shuffle(training_data)

for batch in get_batches(training_data,
batch_size):

inputs,targets=extract_inputs_targets(batch)
#forward pass with design parameters
h_input=dot_pdt(nin, mode1[0]) + mode1[1]
h_output= RELU (h_input)
in (nout)=dot_pdt (h_output, mode1[2])
predictions= RELU (in (nout))
# Calculate RMSE loss function
loss=cal_RMSE (predictions, instance_targets)
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Figure 5 Back propagation neural network architecture for residential drainage renovation.

#Backward pass
evaluate output_err,hidden_err
update w and b using gradient descent patterns

with G
(

0, 2
nin

)
end for

return the trained BPN2 model for optimal drainage
renovation

The batch size is the size of the data chunk implemented
during each iteration, either in small or large portions of
selected regions of land usage in terms of unit range. The
learning rate refers to how quickly the proposed BPN2-RDR
model adapts to its adjusted hyperparameter range based on
the feedback from the training data,with a significantly greater
count indicating major alterations in the applied renovation
strategies in the residential districts.

Dropout is a regularization strategy in which neurons are
discarded randomly throughout the training phase, either
by including or excluding certain strategies in the overall
renovation plan for a robust outcome of the training dataset.
One hyperparameter that helps to reduce overfitting is the
dropout rate, which controls the likelihood of neurons being
discarded in a particular layer. The neural network’s
design architecture for drainage infrastructure comprises
decisions regarding the number of neurons in every single
layer and the total number of hidden layers. It is better to
have smaller learning rates α that result in slower performance
than having many training repetitions. For the next subsequent
layers of the BPN2-RDR model, the output of the neuron is
given with the sum of activated input neurons added with bias
represented using equation (3).

nout = max(0, w(sum of nin + b) (3)

Instead of choosing the quickest weights of parameters to
minimize variance, a process known as ‘early convergence’
increases the probability that the network can identify an

appropriate combination of renovation possibilities with the
corresponding features in every network layer. Each fully
connected layer is trained with the following renovation ideas.
The testing set determines its effectiveness, which shows
how well the newly-trained renovation strategies work in
their respective districts in the neighbourhoods of residential
premises.

Integration with Drainage Renovation

The renovation of drainage networks in residential areas
uses sustainable stormwater maintenance that utilizes soakage
trenches to manage and control stormwater runoff. The
objective is to minimize surface runoff and help prevent
surface flooding. This is particularly helpful in cities and
suburbs because impervious surfaces like pavements and
roads accelerate drainage. A narrow, straight trench below the
surface lined with gravel sits beneath a subterranean ventilated
pipe known as a ‘soakage trench’. Including a drainage trench
in a drainage system renovation requires careful consideration
of various elements such as soil type, infiltration rates, and
any unique features of the residential district or urbanized
area. Soakage trenches can be entirely underground and
undetectable or help define borders or margins within the
existing drainage environment. Firstly, a hole approximately
two feet in width and depth is dug to evaluate the soil’s
capacity for drainage. Water is added to the hole, allowed
to empty and then refilled to determine how quickly the water
disappears. The location is excellent for a soakage trench if
the water in the hole drains in < 1 day, around 1”/hour. In
this type of renovation, the modular design material comprises
polypropylene copolymer. The size of a soakage trench can
be estimated using the following equation (4).

len (st) = area(roof ) × si zing_ f actor

in f iltration_rate
(4)
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where area(roof ) represents the area that contributes the
runoff to the st valued in sq. ft and the si zing_ f actor is
a dimensionless factor based on the soil type in the region
and the drainage conditions near to the residential premise.
Infiltration_rate is the rate at which water can infiltrate the
soil, measured in inches/hour. In this context, the “infiltration
rate” is the rate in inches per hour at which water may seep
into soil. Instead of using “ratio” to express the connection
between two values, it is more appropriate to use “rate” to
convey the speed or velocity of the process being described
(water infiltration in this instance). “Infiltration rate is the rate
at which water can infiltrate the soil, measured in inches/hour.”

By solving numerous problems associated with stormwater
management and improving the drainage system’s general
sustainability and effectiveness, stormwater swales can be
very helpful in renovating residential drainage. Swales’
natural coverage and moderate slopes designed to slow down
stormwater discharge will be in the following equation (5)
range.

swale_si ze = top(t) ∗ base(b) ∗ depth(d) (5)

swale_si ze is the size of the corresponding drainage
network; the parameter, top (t) , is as the width of the top
of the swale in feet(ft); base(b) is the width of the base of the
swale, also measured in feet(ft), and depth(d) is the depth
of the swale, also measured in feet(ft). As a result, there is
less chance of soil erosion, safeguarding residential areas’ soil
integrity and avoiding sedimentation in adjacent water bodies.
The sizing of well-drained soils of a residential area is intended
to maintain the integrity of the soil in nearby residences with
approximately 750 sq.ft of the rooftop to be managed; the
soakage trench can be a maximum of 15 feet long with a
sizing factor of 0.020.

Appropriate renovations can be made to the drainage
infrastructure by adding riprap, a rock armor erosion detection
measure. Swales’ vegetation and moderate slopes are
designed to slow down stormwater runoff. As a result, there is
less chance of soil erosion, safeguarding residential areas’ soil
integrity and preventing water accumulation in neighbouring
watercourses. The sizing of riprap for erosion protection in
district residential drainage can be estimated using equation
(6):

Ri prap(si ze) = 300 ×
(

Fvel × Crtical_Shear_Stress

accgravit y

)1/3

(6)

Where Fvel denotes the velocity of water flow (in feet
per second); the Crtical_Shear_Stress is the minimum
Shear_Stress required to prevent erosion measured by
pounds/sq.ft. The gravitational acceleration force constant is
represented as accgravit y with the default value of 32.2ft/s2.
Based on evaluations and forecasts of drainage infrastructure,
the suggested method may be used for homes with restored
drainage networks that have the correct inlet and outflow and
for homes along gradient slopes and channel banks that feature
tiny ponds and retentions.

These could include increasing drainage pipeline capac-
ity, streamlining flow channels, implementing sustainable
management practices, and checking the effectiveness of

the renovated residential district drainage network. The
effectiveness of renovation strategies can be determined by
inputting proposed changes and assessing predicted outcomes.

Early stopping is applied as a regularization technique that
can stop training iteration values once the model performance
on validation data samples starts deteriorating. The proposed
system paves the way for residential drainage systems that
are more adaptable and sustainable in the face of changing
environmental and demographic factors. The results make a
valuable contribution to urban water management and provide
insights into the use of AI in infrastructure development
projects. Integrate the trained neural network into the
decision-making process for renovating the drainage network.
The decision-making method for upgrading the drainage
network easily incorporates the trained model, offering
sustainability and agility in the face of shifting socioeconomic
and environmental variables [26].

4. COMPARATIVE ANALYSIS

The comparative analysis used peak flow reduction rate,
accuracy, precision, recall, f1-score, and RMSE. Previous
research studies such as GA-NN [18], LSTM-GCA [20], and
HM-SWMS [23] are followed for performance comparison
with the proposed algorithm.

Peak Flow Reduction Rate
A greater peak-level Frate reduction indicates better runoff

management and control by the stormwater drainage system.
The result can lessen the chance of overflowing during heavy
rainfall or storm activity. Reduction in peak rates of flow Frate

helps to lessen the detrimental impact and is easy to calculate
mathematically. These measures are critical to minimizing
soil loss, preserving drainage path credibility, and preventing
soil deposition in nearby watercourses in residential areas.
Table 2 shows the experimental setup.

When it comes to peak inflow reduction rate, as shown
in Fig. 6, the suggested approach performs better than the
existing alternatives, such as GA-NN [18], LSTM-GCA [20],
and HM-SWMS [23]. Therefore, it can be concluded that
the suggested BPN2-RDR is the best means of controlling
drainage challenges and minimizing the flow.

Accuracy Analysis

As shown in Fig. 7, greater accuracy indicates that the neural
network’s algorithm successfully anticipates renovating the
infrastructure of residential drainage network boundaries.
The ratio of accurately predicted instances of renovation oc-
currences in the region with particular characterstics in
response to the flow rate of total instances possible is used
to calculate the level of accuracy. It clearly indicates a
BPN2-RDR model’s performance regarding overall design
conditions or associated findings. The categorical values
shown in Figure 7 denote the effectiveness of a renovation
project RC , indicating it as very poor, average, good,
excellent. The accuracy of drainage condition indicates that
the investigated residential drainage asset is in ‘very good’ or
optimal condition, ‘good’ denotes the satisfactory condition of
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Table 2 Experimental Setup.

Parameters Parameter Description

Number of Nodes 10, 20, 50, 100
Hidden Neurons 11,22,55,110

Output Nodes 1,2,5,10
Total Weights 133

Total Bias 11
CPU Intel i7/i9 or AMD Ryzen 7/9
GPU NVIDIA RTX 3080/3090
RAM 16 GB minimum, 32 GB

Storage SSD with at least 512 GB for fast read/write operations.
Programming Language Python 3.8

Deep Learning Framework TensorFlow 2.x
IDE/Code Editor Jupyter Notebook, PyCharm, or VS Code

Libraries & Dependencies CUDA Toolkit

Figure 6 Peak flow reduction rate on varying system asset types.

the drainage asset. It might not be flawless,but at least it works
well for renovations involving updated pipeline capacity and
slope updates and functions well enough.

Precision

The selection of the forecasting cutoff impacts precision
analysis and can change the ratio of false positives to false
negatives by altering the threshold amount. Recall and
precision are helpful when handling specific issues with
drainage networks. Recall evaluates the BPN2-RDR model’s
capacity to capture every positive instance, whereas precision
determines the correctness of implementing the accurate
estimates using equations (7) and (8).

precision = t p

tp + f p
(7)

recall = t p

tp + f n
(8)

A degree of greater precision (Fig. 8) and recall (Fig. 9)
means that the model is probably accurate when it predicts
something positive will take place, such as the effective
renovation of a drainage network project. The term ‘true
positives’ or t p represents the number of assets after they
underwent the renovation strategy correctly classified as being
in an ‘excellent’ state. The other measure, called false
positives f p, indicates the number of asset types incorrectly
classified as ‘good’ or ‘excellent’. The measuring value f n
indicates the number of assets in ‘good’ condition after the
renovation.

RMSE Analysis

RMSE is a technique used to select models according to
error prediction outcomes. The current error shows the
degree to which the estimated outcome deviates from the
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Figure 7 Accuracy analysis of drainage infrastructures.

Figure 8 Precision analysis of renovated drainage infrastructures.

value that has to be estimated. If the suggested model’s
average is the smallest, each road segment’s root-mean-square
(RMSE) results should be derived from the planned drainage
network source. As given in [24], the overall number of
instances is 700+ data about the residential district drainage
network related to the system points of information or
instances in the data set, as depicted in Fig. 10.

5. CONCLUSION

The proposed BPN2-RDR can contribute to applying ren-
ovation ideas and optimising design patterns for drainage
pipeline flows other than those in residential areas. The
implemented renovation strategies such as soaking trenches,
infiltration rates, storm swales, and soil type analysis help

control stormwater runoff and maintain the good condition
of drainage infrastructure compared to earlier strategies. The
study examines the obstacles produced by various materials
for drainage transmission lines, sewage lines, and observation
facilities in residential areas. The research highlights the
necessity of renovating drainage structures to mitigate flood-
ing and manage anticipated flood occurrences by reducing
peak flow rates through optimal pipelines. Sustainable
stormwater management techniques, such as soakage trenches
and drainage swales, have been incorporated with drainage
renovation techniques. The sizes of these structures are
carefully determined by considering the drainage conditions,
soil type, and soaking rates. Dropout is also considered
a regularization mechanism during the backpropagation
learning of the recommended neural network using the BP
model. Early stopping is used to prevent overfitting, and
testing datasets are used to assess the model’s performance.
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Figure 9 Recall analysis of the drainage renovation project.

Figure 10 RMSE analysis of varying drainage data instances.

LIMITATION

Implementing drainage renovation projects based on neural
networks may face compatibility issues when integrating
existing drainage infrastructures with advanced training
algorithms. The proposed algorithm might not be applicable
during sudden environmental changes and natural disasters.

FUTURE ENHANCEMENT

The challenges mentioned above will be addressed in the
future by training the learning algorithm with the imple-
mentation cost of the drainage network pipeline to improve
economic and weather aspects, including frequent rainfall
patterns.
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