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Due to the phenomenon of numerical dispersion and oscillation used for solving one-dimensional convection diffusion equations, the accuracy of
numerical simulation results is not high. Therefore, a method is proposed based on operator splitting for a one-dimensional convection diffusion
equation. Using the operator splitting algorithm, the undetermined coefficient method is applied to the convection and diffusion steps, and
dimensionless coefficients are introduced to minimize the numerical oscillation and numerical diffusion of the scheme. A new numerical solution
scheme of one-dimensional convection diffusion equation is constructed by using the results of convection step calculation as the known value to
solve the diffusion equation. The experimental results show that the proposed method can effectively control the numerical oscillation and numerical
diffusion, and has good convergence and stability, and high accuracy. It can effectively solve the one-dimensional convection diffusion equation, and
has certain reference value.
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1. INTRODUCTION

The one-dimensional convection diffusion equation can be
used to describe the convection and diffusion phenomena
such as mass transfer and heat transfer in the atmospheric,
oceanic, and river environments, and in the chemical industry
[1]. Most solutions to fractional differential equations cannot
be expressed in actual analytical form; That is to say, most
analytical solutions are special functions that are difficult to
calculate. However, with the wide application of fractional
differential equations, how to improve the accuracy of
numerical simulation results in the most convection diffusion
problems, and how to solve the problem of how much
computation and storage are required for fractional differential
equations, has become a research focus of many scholars
[2–3]. At present, there are several important numerical
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methods available for solving fractional differential equations.
These include: finite difference method, finite element
method, boundary element method and the characteristic
line method [4–5]. At present, the convection diffusion
type equation has been solved by using the differential
operator theory and Euler Lagrange splitting scheme [6],
and the undetermined coefficient method with high-order
accuracy was constructed, which achieved good results in
one-dimensional convection calculation [7]. However, these
methods are used to solve the convection diffusion equation.
In the optimal convection diffusion problem, numerical
dispersion and oscillation are common, which affect the
accuracy of numerical simulation results. In recent years, the
operator splitting method has become an effective method for
to solving the one-dimensional convection diffusion equation.
Its main advantages are that the split equation is easier to solve,
the scheme is flexible, and the stability is good. But it also has
two shortcomings: one is that the splitting error is inevitable
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when the operator is not commutative; the other is to determine
the intermediate boundary conditions of the splitting equation.
The one-dimensional convection diffusion equation is divided
into three equations (convection diffusion reaction), and the
splitting error is analyzed theoretically [8]. We compared the
solutions of one-dimensional convection diffusion equation
under four different splitting schemes: standard Lie splitting,
strang splitting (here the convection diffusion reaction term
is divided into three operators), source splitting (here the
convection and diffusion term is regarded as an operator, and
the reaction term is regarded as an operator) and approximate
matrix decomposition. There is room for improvement [9].

Hence, in this paper, a one-dimensional convection diffu-
sion equation solution method based on operator splitting is
proposed. The undetermined coefficient method is applied to
the convection step and the diffusion step respectively, and
a dimensionless coefficient is introduced into the scheme to
minimize the numerical oscillation and numerical diffusion.
A new numerical solution scheme for one-dimensional
convection diffusion equation is constructed by using the
convection step as the known value. The performance of the
proposed method is tested by comparing it with that of other
methods.

2. OPERATOR SPLITTING OF
ONE-DIMENSIONAL CONVECTION
DIFFUSION EQUATION

The one-dimensional convection diffusion equation describes
the physical phenomenon of convection and anomalous sub-
diffusion of particles or energy or other physical quantities in
a physical system [10]. In this section, the operator splitting
method for one-dimensional convection diffusion equation
and its results are discussed.

Consider the following one-dimensional convection diffu-
sion equation

ϑc

ϑ t
+ �(u(x, t)c) = ∇K∇c + R(c),

xε�

tεT

c|ϑ� = f (x, t)

Where ω is a region (d = 1, 2, 3) of R(c), u(x, t) is the
velocity field, c is the solution concentration, x represents
spatial variable, T is the temperature, K is the diffusion tensor.
The reaction term, R, has different expressions in different
cases. This leads to a complete and completely discrete
solution process.

2.1 Operator splitting method

For A → B type Lie splitting. Generally, there are two
splitting schemes:

1) Let A = −u∇c + R(c), B = ∇(K∇c)., so in each time
step [tn, tn+1], the following equation is solved:

ϑc1

ϑ t
= −u∇c1 + R

(
c1

)
c1 (x, tn) = c (x, tn)

ϑc2

ϑ t
= −u∇c2 + R

(
c2

)
c2 (x, tn) = c1 (x, tn+1)

It can be concluded that,

c (x, tn) ≈ c2 (x, tn+1)

2) Let A = −u∇c + ∇(K∇c), B = R(c), so in each time
step [tn, tn+1], the following equation is solved

ϑc3

ϑ t
= −u∇c + ∇(K∇c2)

c3 (x, tn) = c (x, tn)

ϑc2

ϑ t
= R(c)

c2 (x, tn) = c1 (x, tn+1)

It can be concluded that,

c(x, tn+1) ≈ c2 (x, tn+1)

2.2 Operator Classification Boundary

The one-dimensional convection diffusion equation essen-
tially includes three simultaneous processes: convection, dif-
fusion and reaction. The boundary conditions of the governing
equation also simultaneously reflect the influence of these
processes [11–12]. When two operators, A and B, are used to
split the one-dimensional convection diffusion equation into
union order, it is assumed that the two processes occur in
sequence. Therefore, when the operator splitting method is
used, it is very important to derive the boundary conditions
suitable for splitting equations, i.e. the intermediate boundary
conditions [13–14]. However, the boundary conditions of the
operator splitting method have often led to “serious conflict”.
In this section, Dirichlet boundary conditions for the splitting
Equations (3) and (4) are derived based on Leveque’s concept
of hyperbolic equation [15].

In order to simplify the problem, we consider the case that
the velocity field u is time independent and R(c) = λC . For
u, it depends on time. For the case of R(c) being nonlinear,
we can use some iterative techniques. It turns into a linear
case.

If Equation (3) is regarded as a Cauchy problem and
integrated in a time step �T the following expression can
be obtained

c1(x, tn+1) = exp(�t (A1 + λ))c(x, tn)

Here A1 = −u∇, because we use the first order precision
Lie splitting. Therefore, the first order approximation can also
be made.

c1(x, tn+1) ≈ c(x, (tn) + t (A1 + λ)c(x, tn)
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Let f1(tn+1) be an appropriate boundary condition for
Equation (3); then the above equation can be expressed as

f 1(tn+1) ≈ c(x, tn) + t (A1 + λ)c(x, tn)

and,
xεϑ�

For Equation (4), the boundary conditions are derived on
the assumption that f is sufficiently smooth.

f 2(tn+1) = f (tn+ 1
2
, x)

At the end of each calculation cycle, the boundary
conditions of the original equation are still used:

f 2(tn+1) = f (tn+1, x)

In Equation (7) c(tn, x) = f (tn, x), where
cx(tn, x), cy(tn, x) is solved with the following equation
ϑc
ϑ t = −u∇c + λc. Then, for equation ϑc

ϑ t = −u∇c + λc,
with respect to the spatial boundary: �{

ϑcx
ϑ t = −u∇cx + λcx
ϑcy
ϑ t = −u∇cy + λcy

Where ϑc
ϑ t is the total derivative.

3. ONE-DIMENSIONAL CONVECTION
DIFFUSION EQUATION BASED ON
OPERATOR SPLITTING

On the basis of the above operator splitting results, the
convection step and diffusion step are solved consecutively,
and the results of each part are fused to reduce the error and
improve the convergence.

3.1 Solution of Convection Step by
Undetermined Coefficient Method

The Equation (2) is discretized by crank Nicolson scheme

un+1 − un

�t
+ λ(

un+1 − un

2�x
) = 0

where �t is the time step; �x is the space step. It can be
obtained by changing Equation (4)

−δ
un+1

4
+ un+1 + δ(

un−1 − un

4
) = δun+1 + un−1 − δ

un

4

where: δ = 2λ�t
�x .I

In this scheme, algebraic averaging is used to discretize the
convective terms, and the different roles of each node in the
scheme are not considered. In order to improve the accuracy
of the scheme, the undetermined coefficient method is used
to assign different weight coefficients to each node [16–17].
At the same time, taking the minimum numerical oscillation
and numerical diffusion of the scheme as the improvement
objective, the appropriate values of these undetermined weight

coefficients are determined. The coefficients in Equation (5)
are replaced by undetermined coefficient ai (i = 1, 2, . . . 6):

a1un−1 + a2u + a3un+1 = a4un−1 + a5un + a6un+1

Using the Taylor expansion of Equation (16), it can be
concluded that

(a1 + a2 + a3) �t
ϑu

ϑ t
+ (a2 + a3 − a1 − a6)�x

ϑx

ϑ t
=[

((a4 + a5 + a6) − (a1 + a2 + a3)) u + �x2
] ϑu

ϑx
+

(a3 − a1) λ�t�x
ϑu

ϑx
+ (a5 + a6) λ�t�x2 ϑ2u

ϑ2x

+ (a2 + a3) λ�t�x3 ϑ3u

ϑ3x

+ (a4 − a2) λ�t�x4 ϑ4u

ϑ4x
+ (a1 + a6) λ�t�x5 ϑ5u

ϑ5x

+ (a4 − a5) λ�t�x6 ϑ6u

ϑ6x

Equation (17) is the equivalent differential equation of
Equation (16) simulating convection Equation (2). In
order to minimize the numerical oscillation and diffusion
simultaneously, the following six independent algebraic
equations are applied:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 + a2 + a3 = 1
(a3 + a4) − (a1 + a6) = δ

(a4 + a5 + a6) − (a1 + a2 + a3) = 0
δ2 + 2 (a1 − a3) δ + (a1 + a3) − (a4 + a6) = 0
δ3 − 3 (a1 − a3) δ2 + 3 (a1 + a3) δ + (a1 + a3)

− (a4 + a6) = 0
δ4 − 4 (a1 − a3) δ3 + 6 (a1 + a3) δ2 + 4 (a1 − a3) δ

+ (a1 + a3) − (a4 + a6) = m

where m is a dimensionless parameter. This is based
on the Fourier spectral analysis theory of numerical scheme
stability analysis. When the first term on the right side of
the equivalent differential equation is an odd order derivative
term, the scheme is dominated by numerical dispersion; when
it is an even order derivative term, the scheme has numerical
diffusion property. A dimensionless parameter m is added to
the right side of Equation (17) to enhance the stability of the
scheme. The unique solution for the system of Equations (18)
is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = 1
12 (δ − 1)(δ − 2) + m

4δ(1+δ)

a2 = 1
12 (δ + 1)(δ + 2) + m

4δ(δ−1)

a3 = 1
12 (δ + 1)(δ + 2) + m

4δ(δ−1)

a4 = 1
12 (δ + 1)(δ + 2) + m

4δ(δ−1)

a5 = 1
12 (δ + 1)(δ + 2) + m

4δ(δ−1)

a6 = 1
12 (δ − 1)(δ − 2) + m

4δ(1+δ)

3.2 Solution of Diffusion Step by
Undetermined Coefficient Method

For the discretization of the same convection equation, the
undetermined coefficient bi = (i = 1, 2, . . . 6) is used to
replace the coefficients in Equation (5)

b1un−1 + b2un+2b3un+1 = b4un−1 + b5un + b6un+1
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By Taylor expansion of Equation (16), it can be concluded
that

(b1 + b2 + b3) �t
ϑu

ϑ t
+ (b2 + b3 − b1 − b6)�x

ϑx

ϑ t
=[

((b4 + b5 + b6) − (b1 + b2 + b3)) u + �x2
] ϑu

ϑx
+

(b3 − b1) λ�t�x
ϑu

ϑx
+ (b5 + b6) λ�t�x2 ϑ2u

ϑ2x

+ (b2 + b3) λ�t�x3 ϑ3u

ϑ3x

+ (b4 − b2) λ�t�x4 ϑ4u

ϑ4x
+ (b1 + b6) λ�t�x5 ϑ5u

ϑ5x

+ (b4 − b5) λ�t�x6 ϑ6u

ϑ6x

Equation (21) is the equivalent differential equation of
Equation (20) simulating diffusion Equation (3). In order to
minimize both the numerical oscillation and the numerical
diffusion of the scheme, the following six independent
algebraic equations are applied.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(b1 + b2 + b3) �x = 1
(b3 + b4) − (b1 + b6) = 0
(b4 + b5 + b6) − (b1 + b2 + b3) = 0

− ((b1 + b3) − (b4 + b6))
�x2

4 = τ

((b3 + b4) − (b1 + b6))
�x3

12 + (b1 − b3) �x�tτ = 0
2 (b1 + b2 + b3)�t2τ 2 + (b1 + b3) �x2�tτ

+ ((b1 + b3) − (b4 + b6))
�x4

24 = 0

The unique solution of the equations is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1 = 1
12�t − τ

�x2

b2 = 5
6�t + 2τ

�x2

b3 = 1
12�t − τ

�x2

b4 = 1
12�t + τ

�x2

b5 = 5
6�t − 2τ

�x2

b6 = 1
12�t + τ

�x2

3.3 Solution of Convection
Diffusion Equation

In [tn−1, tn] time steps, the results of convection step and
expansion step are fused, and Equation (16) is solved by
Equation (14); in [tn−1, tn] time step, Equation (20) is solved
by using the calculation results in [tn−1, tn] time steps, which
constitutes a complete step-by-step discrete solution process
of convection diffusion equation (1). The following matrix
forms can be obtained by combining Equations (19) and (23)

{
AUn = P1Un−1 + F1
QUn+1 = P2Un + F2

Among

A =

⎛
⎜⎝

a2 a3

a1
. . .

a1 a2

⎞
⎟⎠

P1 =

⎛
⎜⎝

a5 a6

a4
. . .

a5 a6

⎞
⎟⎠

Q =

⎛
⎜⎝

b2 b3

b1
. . .

b1 b2

⎞
⎟⎠

P1 =

⎛
⎜⎝

b5 b6

b4
. . .

b5 b6

⎞
⎟⎠

Un = [u1, u2, . . . un]T

F1 = [(a1 − 1) u0, 0, 0, . . . , (a3 − 1) un]T

F2 = [(b1 − 1) u0, 0, 0, . . . , (b3 − 1) un]T

3.4 One-Dimensional Convection Diffusion
Equation Based on Operator Splitting

For (3), if
ϕ(t, x) =

√
1− ‖ u ‖2

The derivative operator of λ = ( u
ϕ(t,x)

, 1
ϕ(t,x)

) is defined
along the characteristic direction by using the special front
method

ϑ

ϑλ
= 1

ϕ(t, x)
,

ϑ

ϑ t
+ ∇ u

ϕ(t, x)

When u = (u1, u2, . . . u2
d), ‖ u ‖2= u2

1+u2
2+. . . u2

d . Then
Equation (33) can be written as the following equivalent form

φ(t, x)(
ϑc1

ϑλ
) = R(c)1

If the abscissa of the intersection point of the inverse feature
and the straight line t = tn is x̆n−1 from point (tn−1, x), then
at t = tn−1, there is

ϕ

(
ϑc1

ϑλ

)
≈ ϕ (tn−1, x)

(
c1 (tn−1, x) − c1 (tn, x̆)

(‖x − x̆n+1‖)2 + (�t)

Here, x̆ can be determined by the characteristic line method.
For any x , it is satisfied by the characteristic line of (tn+1, x).

dx

dt
= u

X = (tn−1, x, tn+1) = x

According to the rectangular equation, integral Equation
(35) can be obtained

x̆n+1 = x − u(tn+1, x)�t

or

u(−4y, 4x)
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Using Equation (34), Equation (32) can be approximated
by

ϕ(
ϑc1

ϑλ
) ≈ c1(x, tn+1) − c1(x̆, tn)

�t

In the case of Equation (35), since there are x̆n+1 and
u(tn, x̆n+1) in (35), iterative solution is needed to determine
x̆n+1, such as Newton iterative method, so as to determine
the value of u(tn, x̆n+1). Sometimes, the boundary may have
been reached before the arrival of the time layer in the reverse
direction.

x̆n+1 = x − u(tn, xn+1)(tn+1 − t), tε
[
tn, tn−1

]
or

x̆n+1 = x − u(tn, xn+1)(tn+1 − t), tε
[
tn, tn−1

]
In this case, Equation (39) can be approximated by the

following equation

ϕ(
ϑc1

ϑλ
) ≈ c1(x, tn+1) − c1(x̆, tn)

tn+1 − t

Then the solution format is

c1(x, tn+1) − c1(x̆, tn)

tn+1 − t
= R(c1(x, tn+1))

3.5 Error Analysis

In general, the splitting error is inevitable due to the non-
commutativity of the operators. The splitting error based on
Lie splitting can be expressed as

Error = −1

2
�t2 ABω(c) = −1

2
�t2 A′B ′t3

Where A′ and B ′ are Lie operators corresponding to
operators A and B , and if operator A′ is linear, then A′

0 =
A(c). For the convection step, the expression of the splitting
error is

Error1 = −1

2
D(�t − �c)�t2 ABω(c) = −1

2
�t2 A′B ′t3

If the reaction term R is linear with respect to C and
independent of X , then the error caused by splitting diffusion
and reaction term can be eliminated; if D and u are
independent of X , the error caused by splitting the convection
and diffusion term can be avoided. If both of them hold, then
there is no splitting error.

For the expansion, the expression of the splitting error is

Error1 = −1

2
D�t2 ABω(c) = −1

2
�t2 A′B ′t3

If ωu = 0 and R do not depend on X , the error caused by
splitting convection and reaction term can be eliminated; if the
reaction term R is linear with respect to C and independent
of X , the error caused by splitting diffusion and reaction term
can be avoided. If both are true, the splitting error is zero.

4. EXAMPLE ANALYSIS

In order to verify the effectiveness of the proposed method,
an example is given.
Example: Ct + u∇c = ∇(B∇c) + λc

The initial conditions are: C(x, y) =
exp(− (x−x0)

2+(y−y0)
2

2α2 )

Here, (x0,−y0) and α > 0 are the center and standard
deviations, respectively. If the diffusion coefficient is greater
than 0, the velocity field u = (−4y, 4x), and λ is a constant,
then its exact solution can be expressed as

C(x, y, t) = 2α2

2α2 + 4Bt
exp(λt − (x ′ − x0)

2 + (y ′ − y0)
2

2α2 + 4Bt

Where (x ′, y ′, 0) is the intersection point of the character-
istic line passing through the point (x, y, t) when t = 0,

x ′ = cos(4t)x + sin(4t)y

y ′ = −sin(4t)x + cos(4t)y

Parameter selection:

T = 1, � = [−1, 1]2 , B = 0.01,

λ = 0.1, (x0, y0) = (−0.5,−0.5), α2 = 0.01

Figure 1 shows the results and corresponding theoretical
solutions of the one-dimensional convection diffusion process
when the dimensionless parameter m is different.

It can be seen from Figure 1 that when m = 0, the first term
on the right side of the equivalent differential equation of the
scheme is the fifth derivative term, and there is not enough
numerical viscosity. Therefore, the calculation results have
obvious numerical vibration. With the increase of M , the
effect of numerical viscosity increases, while the effect of
numerical vibration decreases. The ideal value of M is about
0.02-0.06, and the value of M is about 0.02-0.06 When it is
less than 0.06, M = 0.02 should be selected for the actual
calculation.

Comparing Figure 2 and Figure 1 (b), the upwind
difference scheme has a strong numerical diffusion effect
when simulating the convection and diffusion of sawtooth
waves. It makes the initial sawtooth wave tip and slide at the
top, and dissipates significantly from the bottom to both ends.
The overall waveform tends to be plump. The results obtained
are quite different from the theoretical solutions. The crank
Nicolson scheme has obvious numerical oscillation, which
is quite different from the theoretical solution. In contrast,
the non-zero factor M is introduced in this method to achieve
the actual physical process of material transport and diffusion
and, at the same time, the control of numerical vibration and
numerical diffusion can achieve ideal results.

In order to verify the convergence rate of the proposed
method for the one-dimensional flow diffusion equation,
the one-dimensional convection diffusion equation under
different convection and fast three conditions are solved
respectively. Results are reported below.

For the general convection diffusion equation, the diffusion
coefficient k = 0.1. The convergence with different
convection coefficients is shown in Figure 3 and Figure 4.
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Figure 1 Comparison of calculation results and theoretical solutions.

Figure 2 Comparison of calculation results.

Figure 3 Error chart.

Figure 5 and Figure 6 show the calculation for the
convergence of diffusion in the convection-dominated case.

It can be seen from the Figures 5 and 6 that the proposed
method has good convergence under different diffusion and
convection conditions. This is mainly because the convection

step and the expansion calculation are not discretized
separately in the operator separation stage, and the calculation
results of the two are integrated into the calculation process of
the other party in order to maximize the elimination of error,
and improve the convergence of the calculation results.
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Figure 4 Error chart.

Figure 5 Error chart.

Figure 6 Error chart.

5. CONCLUSION

In regard to the numerical dispersion and oscillation
phenomenon in the one-dimensional convection diffusion
equation, a method based on operator splitting is proposed. By
using an undetermined coefficient method for convection step
and diffusion step respectively, dimensionless coefficients
are introduced into the scheme according to the minimum
numerical oscillation and numerical diffusion. The numerical
solution scheme of the one-dimensional convection diffusion
equation is constructed by using the convection step as the
known value and applying this to the solution of the diffusion
equation. The experimental results show that this method can
effectively control numerical oscillation and diffusion,and has
good convergence and stability, which is valuable for related
research in the future.

At present, the research is limited to the solution of a
one-dimensional convection diffusion equation. In the later
research, we can broaden the research scope and study more
multidimensional convection diffusion equations.
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